由于其色心缺陷具有长自旋相干性和单光子发射特性,碳化硅成为领先的量子信息材料平台之一。碳化硅在量子网络、计算和传感中的应用依赖于将色心发射高效收集到单一光学模式中。该平台的最新硬件开发专注于角度蚀刻工艺,以保留发射极特性并产生三角形器件。然而,人们对这种几何结构中的光传播知之甚少。我们探索了三角形横截面结构中光子带隙的形成,这可以作为在碳化硅中开发高效量子纳米光子硬件的指导原则。此外,我们提出了三个领域的应用:TE 通滤波器、TM 通滤波器和高反射光子晶体镜,它们可用于高效收集和传播光发射模式选择。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
Linh 等人 35 发现用离子半径较大的碱金属(M = Li、Na 和 K)取代(Bi 0.5 M 0.5 )TiO 3 会增加其直接带隙。将 MCaF 3(M = K、Cs)中的 K 位取代为 Cs 位,可将带隙从间接变为直接,从而改善光学特性。36 Gillani 等人还报道将碱土金属(Mg、Ca、Ba)掺杂到 SrZrO 3 中可使带隙从间接变为直接。37,38 此外,利用静水压力将带隙从间接变为直接被证明是有益的,就像在许多立方钙钛矿中所看到的那样。 39 – 44 通过施加外部压力,卤化物立方钙钛矿 CsBX 3 (B ¼ Sn, Ge; X ¼ Cl, Br) 的带隙减小到零,从而导致半导体到金属的转变。45 – 49 在静水压力下,还对 Ca 基立方碱金属卤化物钙钛矿 KCaX 3 (X ¼ F, Cl) 50,51 和 ACaF 3 (A ¼ Rb, Cs) 进行了第一性原理研究。52,53
电负性_A 赤道角 顶角 s轨道能量_B p轨道能量_B 原子序数_B 电负性_B s轨道能量_A 电离能_A 电离能_B p轨道能量_A 原子半径_B 原子半径_A 原子序数_A 氧化态_A 氧化态_B
图2:具有不同的钙钛矿吸收剂组成的建模吸收和装置响应。a)宽带隙(BPBBR 3,实线)的吸收(黑线)顶部子细胞和窄带隙底部子细胞(APBI 3,虚线,虚线)在TPD结构中,
费米级,非常同意实验。35,36个进一步的研究表明,管重建也可以改变PNR的热振动和热传输。38 - 42因此,ZZ [管]当然可以显着改变PNR的性质,并应进一步探索基于管缘的拟议应用。第二个重要因素是纳米丝的性质由于量子构成效应而随宽度而变化。例如,扶手椅石墨烯纳米骨的带隙遵循3p + 2规则。27,43 MOS 2纳米骨44和扶手椅H- Bn纳米骨45也表现出振荡带隙,带有带有色带宽度的变化。此外,Semductucting石墨烯纳米纤维的带隙46单调降低,并增加了色带宽度。除了边缘状态和宽度外,应变工程也是调整纳米骨的特性的一种有效方法。41,47扶手椅MOS 2的带隙(参考48)和曲折的H-BN 49纳米邦
半导体发射极有可能实现陡峭的截止波长,这是由于它固有的带隙吸收和几乎为零的亚带隙发射,而无需掺杂。本文研究了一种基于锗晶片的选择性发射极,该发射极具有正面抗反射和背面金属涂层,用于热光伏 (TPV) 能量转换。光学模拟预测波长为 1 至 1.85 µ m 时,光谱发射率高于 0.9,亚带隙范围内的光谱发射率低于 0.2,且在带隙附近具有陡峭的截止波长,表明其具有优异的光谱选择性行为。间接测量的 Ge 基选择性发射极样品的光谱发射率与此高度一致,证实了这一点。此外,还从理论上分析了不同温度下将 Ge 基选择性发射极与 GaSb 电池配对的 TPV 效率。这项工作将促进基于半导体的选择性发射极的开发,以提高 TPV 性能。
摘要在过去的十年中,基于金属卤化物钙钛矿(MHP)半导体的太阳能电池的性能飙升,现在与已建立的技术(如结晶硅)相媲美。然而,MHP半导体的最有希望的实施是在一个串联的太阳能电池中,该电池有望并确实提高了更高的功率转换效率。MHP的可调带隙使它们独特地放置在为一系列不同的窄带隙吸收器中提供这些高效串联太阳能电池。基于含有宽带的甲基铵(> 1.7 eV)吸收器顶部细胞的串联设备的效率超过30%,这是令人印象深刻的成就1。尽管如此,基于无甲基铵宽带隙吸收器顶部细胞的串联设备尚未达到30%的效率里程碑。与含有甲基铵的含有和较窄的带隙对应物相比,无甲基铵的宽带隙MHP的性能特别差,这说明了串联细胞技术的更大进步的显着范围。在这篇综述中,我们专注于无甲基铵的MHP。我们强调了这些材料所面临的独特挑战,包括当前限制其开路电压和效率远低于其热力学限制的能量损失途径。我们讨论了该材料系统开发的最新进展,它们在串联光伏技术方面的表现,并突出了似乎特别有前途的研究趋势。最后,我们建议未来的途径探索以加快宽带隙MHP的发展,这反过来又将加速基于这些材料的串联太阳能电池的部署。
多结太阳能电池设计既要考虑理论上的最佳带隙组合,也要考虑具有这些带隙的材料的实际局限性。例如,三结 III-V 多结太阳能电池通常使用 GaAs 作为中间电池,因为 GaAs 的材料质量近乎完美,尽管其带隙高于全局光谱的最佳值。在这里,我们使用具有出色电压和吸收率的厚 GaInAs/GaAsP 应变平衡量子阱 (QW) 太阳能电池来修改中间电池的带隙。这些高性能 QW 被整合到一个三结倒置变质多结器件中,该器件由 GaInP 顶部电池、GaInAs/GaAsP QW 中间电池和晶格失配的 GaInAs 底部电池组成,每个电池都经过了高度优化。我们在 AM1.5 全局和 AM0 空间光谱下分别展示了 39.5% 和 34.2% 的三结效率,这高于之前创纪录的六结器件。
宽带隙 (WBG) 半导体引起了广泛的研究兴趣,用于开发广泛的柔性电子应用,包括可穿戴传感器、软逻辑电路和长期植入式神经调节器。传统上,这些材料在标准硅基板上生长,然后使用机械冲压工艺转移到软聚合物上。该技术可以在转移后保留宽带隙材料的优异电学性能并实现柔性;然而,与三维生物系统相比,大多数设备受到二维配置的限制,其机械拉伸性和形态有限。本文提出了一种无冲压微加工工艺,首次实现了三维柔性可拉伸宽带隙电子器件。该方法在独立纳米膜的两侧都应用光刻技术,可以直接在标准硅晶片上形成柔性结构,以调整材料的光学透明度和机械性能。随后,柔性器件从支撑基板上分离,并进行受控机械屈曲,将宽带隙半导体的二维前体转变为复杂的三维中尺度结构。制造具有三维架构的宽带隙材料的能力,这些材料具有器件级可拉伸性,并具有多模传感能力,将极大地促进先进三维生物电子界面的建立。
