Claudia Cancellieri 博士是 Empa 连接技术和腐蚀实验室的团队负责人/研究员。2008 年,她在洛桑联邦理工学院 (EPFL) 获得物理学博士学位,专门研究应变下铜氧化物和氧化物薄膜的脉冲激光沉积生长。在日内瓦大学的第一个博士后期间,她专注于复杂氧化物界面的生长和特性。她在同步加速器瑞士光源保罗谢尔研究所继续研究该主题,在那里她广泛使用光谱技术来推导埋藏复杂氧化物界面的电子能带结构。她目前的研究课题包括研究功能材料(包括多层系统)的微观结构、缺陷、应力和电子特性。
摘要:本文讨论了不同形式的粉末床熔合 (PBF) 技术,即激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EB-PBF) 和大面积脉冲激光粉末床熔合 (L-APBF)。多金属增材制造面临的挑战,包括材料兼容性、孔隙率、裂纹、合金元素损失和氧化物夹杂物,已得到广泛讨论。为克服这些挑战提出的解决方案包括优化打印参数、使用支撑结构和后处理技术。未来需要对金属复合材料、功能梯度材料、多合金结构和具有定制性能的材料进行研究,以应对这些挑战并提高最终产品的质量和可靠性。多金属增材制造的进步可以为各个行业带来巨大的利益。
摘要:与化学计量简单的氮化铝 (AlN) 相比,锆钛酸铅薄膜 (PZT) 具有优异的压电和介电性能,是先进微机电系统 (MEMS) 器件中另一种有希望的候选材料。大面积 PZT 薄膜的制造具有挑战性,但需求迫切。因此,有必要建立合成参数与特定性能之间的关系。与溶胶-凝胶和脉冲激光沉积技术相比,本综述重点介绍了磁控溅射技术,因为它具有高度的可行性和可控性。在本文中,我们概述了 PZT 薄膜的微观结构特征、合成参数(如基底、沉积温度、气体气氛和退火温度等)和功能特性(如介电、压电和铁电等)。本综述特别强调了这些影响因素的依赖性,为研究人员通过磁控溅射技术获取具有预期性能的PZT薄膜提供实验指导。
在这项工作中,验证了底物退火温度对LA 2 Ti 2 O 7薄膜的厚度和粗糙度的影响。通过脉冲激光沉积技术(PLD)在各种退火温度下成功地在Si(100)底物上生长了一组LTO薄膜,每脉冲的脉冲和能量恒定。扫描电子显微镜(SEM)和原子力显微镜(AFM)用于研究沉积的La 2 Ti 2 O 7薄膜的厚度和粗糙度。由于线性退火温度的升高,薄膜的平均厚度降低。当LTO薄膜在500°C下沉积时,发现最大厚度(231 nm)。均方根粗糙度随着底物温度的升高而线性增加。在LTO以(500°C)沉积时,发现最小粗糙度(0.254 nm)。从获得的结果中,其清晰的证据表明退火温度对LTO薄膜的厚度和粗糙度有影响。关键字
在本研究中,我们制造了一种 Ta/HfO 2-x /Mo 基单细胞忆阻器,这是一种全球独一无二的配置。研究了基于 HfOx 的忆阻器器件上钽和钼电极的突触行为。使用脉冲激光沉积 (PLD) 方法生长 HfO 2-x (15 nm),并使用溅射系统和光刻法制造电极。通过 X 射线光电子能谱 (XPS) 确定金属氧化物化学计量。成功获得了长期增强 (LTP) 和成对脉冲促进 (PPF) 特性,它们在人工神经网络的学习过程中发挥着重要作用。进行了电流-电压测量和保持测试,以确定器件在适当范围内的 SET 和 RESET 状态。结果表明,该忆阻器器件是人工神经网络 (ANN) 应用的有力候选者。
建立了工作流程后,我们随后使用脉冲激光诱导冲击波法将 RNP 直接递送到完整的烟草叶片细胞中,这比原生质体或受精卵更容易制备和处理。我们引入了一个预组装的 RNP,它包含 HiFi Cas9 蛋白、crispr RNA (crRNA) 和 ATTO-550 标记的反式激活 crispr RNA (tracrRNA),靶向烟草 PDS 或 ADF 基因。荧光 tracrRNA 允许直接筛选转染细胞,因此不需要选择标记基因(图 2A')。样本大小和实验设置与上面描述的 DsRed 转染相同(图 1A、B)。根据我们的观察,ATTO-550 荧光在激光处理后 24 小时开始变得可见,在转染后 48 小时达到最大值。根据制造商的说法,RNP 复合物的活性最长为 72 小时。
1项目概述1 1.1 MEC-U设施及其任务简介。。。。。。。。。。。。。。。。。。2 1.2 LCLS/MEC背景,科学影响和计划。。。。。。。。。。。。。。。。。3 1.2.1 LCLS科学影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.2.2 MEC科学影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2.3国际竞赛。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2.4 DOE响应。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1.2.5 MEC-U对HED等离子科学的影响。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1.3 MEC-U科学目标和能力。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6 1.3.1 FLAGSIP实验。 。 。 。 。 。 。 。 。 。 。 。 。4 1.2.4 DOE响应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 1.2.5 MEC-U对HED等离子科学的影响。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1.3 MEC-U科学目标和能力。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6 1.3.1 FLAGSIP实验。 。 。 。 。 。 。 。 。 。 。 。 。5 1.2.5 MEC-U对HED等离子科学的影响。。。。。。。。。。。。。。。。。。。5 1.3 MEC-U科学目标和能力。。。。。。。。。。。。。。。。。。。。。。。6 1.3.1 FLAGSIP实验。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 1.4设施操作要求。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.5 MEC-U项目描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.5.1设施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.5.2实验设备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.6项目范围摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.7项目持续时间和预算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.8管理和合作方法。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.9风险管理策略。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.10设计替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 1.11设施位置替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 1.11.1设计利用远面实验厅的设计。。。。。。。。。。。。。。。。。21 1.11.2独立洞穴的设计。。。。。。。。。。。。。。。。。。。。。。。21 1.12激光系统替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 1.12.1短脉冲激光替代品。。。。。。。。。。。。。。。。。。。。。。。。。。22 1.12.2长脉冲激光替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。23 1.13目标腔室替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.13.1 TCX设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.13.2 TCO设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 1.14未来的计划和任务未来未来。。。。。。。。。。。。。。。。。。。。。。25 1.15当前设计明确允许的结构选项。。。。。。。。。。。。。26 1.15.1双 - 佩塔瓦特升级。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 1.15.2多KJ长脉冲激光升级。。。。。。。。。。。。。。。。。。。。。。。26 1.15.3长脉冲激光器的第三个谐波。。。。。。。。。。。。。。。。。。。。26 1.15.4下游X射线目标室。。。。。。。。。。。。。。。。。。。。。。。26 1.15.5 TCX中的动态3-D断层扫描。。。。。。。。。。。。。。。。。。。。。。27 1.16其他自一致的升级选项。。。。。。。。。。。。。。。。。。。。。。。。。27 1.16.1频率加倍Petawatt梁。。。。。。。。。。。。。。。。。。。。。27
网站:http://www.ece.ualberta.ca/~mgupta1/电子邮件:mgupta1@ualberta.ca电话:7802485637 R&D R&D功能我的研究是多学科的,主要是多学科的,主要集中于具有光学和传感器的柔性元素的光元素和传感器元素,并在光启发下进行光元素,并在光元素上进行照相,并在光元素上进行照相,并在光元素中进行照相,并在光元素中播放。治疗。该研究的重点是工程光学材料和设备,这些材料和设备可以集成在柔性底物上,同时保留其光子性能并根据它们开发新型设备。另一个主要的研究领域是新型生物材料的生长,可用于组织和骨植入物。技术和仪器服务脉冲激光沉积,分子束外延,光学和电气材料表征,光散射传感器开发许可机会
飞秒直接激光写入(FS DLW)是在透明介电材料中产生3D光子微结构的强大方法[1,2]。后者在短时间内通过非线性过程吸收FS脉冲的能量,从而在μM规模的辐照面积(损伤轨道)内进行了永久性的材料修饰,从而导致折射率的热变化。激光波导(WGS)最近引起了极大的关注[1]。飞秒脉冲对激光WGS的铭文受益于快速制造时间,高精度,获得各种几何形状和活性材料。对于此类WG,达到了低至中等传播损失。wg激光器代表光子积分电路的构件之一[2]。如果设计正确,它们会受益于单模模式操作,低阈值和高光强度[3]。表面WG可以通过将非线性光学材料沉积导致脉冲激光通过evanescent-Field景偶联而进行功能化[4,5]。
最近,一种名为体积打印 (VP) 的新型基于光的制造方法已成为此类应用的一种有前途的技术,它能够在几秒钟内打印复杂的厘米大小的模型。[26,27] 最近的研究表明,使用从玻璃到生物聚合物等材料,可以创建中空、可灌注结构,并可能针对中尺度血管系统。[28–31] 然而,与上述所有方法一样,VP 也无法覆盖从 µ m/亚 µ m 到 cm 的分辨率范围,因此目前将其应用限制在特征 > 100–200 µ m 的微流体结构上。另一种基于光的方法双光子烧蚀 (2PA) 则提供了互补功能,虽然打印时间和构造尺寸有限,但达到了所有生物制造方法中最高的分辨率(≤ 1 µ m)。 [8] 2PA 是基于高强度脉冲激光诱导的多光子电离,[32,33,34] 并且已被探索用于各种应用,从“纳米手术”到形成细胞指导微通道。[35–41]