斑马鱼胰腺的特征,与胰岛功能和建模斑马鱼的糖尿病相关的特征已成为了解器官发育和组织再生的强大模型。它也已被广泛应用于糖尿病研究和化学生物学领域。像哺乳动物胰腺一样,斑马鱼胰腺主要由外分泌和内分泌细胞组成[1]。在外分泌胰腺中,导管细胞逐渐形成腔内结构,以促进由腺泡细胞分泌的消化酶的转运,从而向肠道分泌。内分泌细胞聚集在一起,并构造了名为胰岛的细腻组织结构。Within the islets, there are several endocrine cell types, including insulin-secreting β -cells, glucagon-secreting α -cells, somatostatin-secreting δ -cells, ghrelin-secreting ε -cells, and in zebra fi sh also glucose-dependent insulinotropic polypeptide (GIP)-secreting cells.此外,斑马鱼胰腺是一种高度血管化器官,具有大量的血管内部细胞,平滑肌细胞和周细胞[2,3]。胰岛脉管系统对于维持全身葡萄糖稳态至关重要,因为它使胰岛细胞能够感知血糖水平。因此,它参与调节胰岛细胞的旁分泌/自分泌作用,并在调节胰岛素和胰高血糖素分泌的平衡。
摘要:在临床前模型中跟踪神经血管疾病进展的潜在方法是多光子荧光显微镜(MPM),它可以用毛细血管级别的分辨率对脑脉管系统进行成像。但是,获得具有传统点扫描MPM的高质量的三维图像是耗时的,并且限制了用于慢性研究的样本量。在这里,我们提出了一种基于卷积神经网络(PSSR RES-U-NET结构)算法,用于快速对低分辨率或稀疏采样图像进行快速升级,并将其与无分段的无分段矢量化过程相结合,用于3D重建和血管网络结构的统计分析。这样做,我们还证明了半合成训练数据的使用可以取代获得低分辨率和高分辨率训练对而不损害矢量化结果的昂贵且艰巨的过程,从而为收集培训数据的其他MPM任务带来了这些方法的可能性。我们将方法应用于来自小鼠模型的大量视野的图像,并表明我们的方法在成像深度,疾病状态和神经血管内的其他差异中概括了。我们验证的模型和轻量级体系结构可用于将MPM成像时间最多减少四倍,而无需对基础硬件进行任何更改,从而可以在各种设置中可部署性。
简介血管壁是一种复杂的多层组织,其中包含许多细胞群,可协调维持血管稳态并调节疾病状态下的血管重塑。主要动脉的最外层,Tunica Adventitia,由周细胞,成纤维细胞,脂肪细胞,WBC和常驻祖细胞/干细胞组成,均由细胞外基质,血管周围脂肪和Vasa vasorum(1-5)组成。外在重塑发生在慢性血管疾病或急性血管损伤之后,随着外在细胞的增殖,分泌促炎性细胞因子募集循环循环的白细胞,并增加细胞外基质沉积,从而导致慢性血管炎症和慢性血管炎症和僵硬(6,7)。在膜中发现的细胞群体,干细胞抗原-1 +祖细胞(ADVSCA1细胞)已成为兴趣增加的群体,因为这些多能细胞表现出具有特定分化能力的显着异源性基因性,因此对于病理脉管脉冲重塑和血管造成的维修可能很重要(3)。使用平滑肌细胞 - 特异性谱系跟踪和RNA-Seq,我们的组表征了通过原位重编程过程(称为ADVSCA1-SM细胞)来源于成熟平滑肌细胞(SMC)的Advsca1细胞的亚群(8)。与其他
简介血管壁是一种复杂的多层组织,其中包含许多细胞群,可协调维持血管稳态并调节疾病状态下的血管重塑。主要动脉的最外层,Tunica Adventitia,由周细胞,成纤维细胞,脂肪细胞,WBC和常驻祖细胞/干细胞组成,均由细胞外基质,血管周围脂肪和Vasa vasorum(1-5)组成。外在重塑发生在慢性血管疾病或急性血管损伤之后,随着外在细胞的增殖,分泌促炎性细胞因子募集循环循环的白细胞,并增加细胞外基质沉积,从而导致慢性血管炎症和慢性血管炎症和僵硬(6,7)。在膜中发现的细胞群体,干细胞抗原-1 +祖细胞(ADVSCA1细胞)已成为兴趣增加的群体,因为这些多能细胞表现出具有特定分化能力的显着异源性基因性,因此对于病理脉管脉冲重塑和血管造成的维修可能很重要(3)。使用平滑肌细胞 - 特异性谱系跟踪和RNA-Seq,我们的组表征了通过原位重编程过程(称为ADVSCA1-SM细胞)来源于成熟平滑肌细胞(SMC)的Advsca1细胞的亚群(8)。与其他
失明构成了日益增长的全球挑战,约有26%的病例归因于退化性视网膜疾病。虽然基因疗法,光遗传学工具,光敏开关和视网膜假体为视力恢复提供了希望,但这些高成本疗法将使很少的患者受益。因此,了解视网膜疾病是提高有效治疗的关键,需要在体外模型复制病理学并允许定量评估药物发现。多能干细胞(PSC)提供了独特的解决方案,因为它们的无限供应和分化为包含所有细胞类型的光响应性视网膜组织的能力。本综述着重于PSC的光感受器和视网膜色素上皮(RPE)细胞的历史和当前状态。我们探讨了这项技术在疾病建模,实验疗法测试,生物标志物鉴定和毒性研究中的应用。我们考虑可伸缩性,标准化和可重复性的挑战,并强调将脉管系统和免疫细胞纳入视网膜器官的重要性。我们主张在数据采集和分析中进行高通量自动化,并强调了高级微型生理系统的价值,这些系统充分捕获了神经视网膜,RPE和绒毛膜毛细血管之间的相互作用。
最近的研究强调了慢性缺氧在微管菌的作用,这是终末期肾衰竭的最终公共途径。高级时,微管间质损伤与周围毛细血管的丧失有关。相关的间质纤维化会损害氧扩散并供应管状细胞和间质细胞。肾小管细胞的缺氧导致凋亡或上皮间质转分化。 这又加剧了肾脏的纤维化和随后的慢性缺氧,在火车上设置了一个恶性循环,其终点为ESRD。 已经鉴定出了早期诱导微型间缺氧的许多机制。 由于血管活性物质失衡而导致的肾小球损伤和血管收缩减少了骨细胞周围毛细血管血流。 血管紧张素II不仅会收缩传出动脉,而且通过诱导氧化应激,也会阻碍氧气在管状细胞中的有效利用。 肾脏中的相对缺氧还导致肾小管细胞的代谢需求增加。 此外,肾脏贫血会阻碍氧气递送。 这些因素可能会在出现脉管系统发生重大病理变化之前会影响肾脏,并使肾脏对肾小管造成损伤。 针对慢性缺氧的治疗方法应证明有效地针对广泛的肾脏疾病有效。 当前的方式包括用促红细胞生成素的贫血改善,通过阻断肾素 - 血管紧张素系统的封闭性毛细血管血流保存以及使用抗氧化剂。肾小管细胞的缺氧导致凋亡或上皮间质转分化。这又加剧了肾脏的纤维化和随后的慢性缺氧,在火车上设置了一个恶性循环,其终点为ESRD。已经鉴定出了早期诱导微型间缺氧的许多机制。由于血管活性物质失衡而导致的肾小球损伤和血管收缩减少了骨细胞周围毛细血管血流。血管紧张素II不仅会收缩传出动脉,而且通过诱导氧化应激,也会阻碍氧气在管状细胞中的有效利用。肾脏中的相对缺氧还导致肾小管细胞的代谢需求增加。此外,肾脏贫血会阻碍氧气递送。这些因素可能会在出现脉管系统发生重大病理变化之前会影响肾脏,并使肾脏对肾小管造成损伤。针对慢性缺氧的治疗方法应证明有效地针对广泛的肾脏疾病有效。当前的方式包括用促红细胞生成素的贫血改善,通过阻断肾素 - 血管紧张素系统的封闭性毛细血管血流保存以及使用抗氧化剂。最近的研究阐明了缺氧诱导的转录机制,即脯氨酰羟化酶调节缺氧诱导因子。这给开发了针对这一最终共同途径的新型治疗方法的发展。J Am Soc Nephrol 17:17–25,2006。doi:10.1681/asn.2005070757 O
每个心脏周期都由一个放松时期(舒张期),然后是心室收缩(收缩)。在舒张期间,心室放松以填充。在左室和左心室收缩中,分别将血液驱逐到肺和全身循环中。心室通过主动脉将血液泵入系统性循环中。全身血管抗性(SVR)比肺血管耐药(PVR)大5-7倍。这使其成为高压系统(与肺血管系统相比),这需要从左心室(LV)中获得更大的机械功率输出。LV的游离壁和介入的隔膜形成心脏中大部分肌肉质量。正常的LV可以产生高达300 mmHg的脑室内压力。冠状动脉灌注左室主要发生在心肌放松时。右心室从静脉腔和冠状动脉循环中接收血液,并通过肺脉管系统将其泵入LV。由于PVR是SVR的一部分,因此肺动脉压相对较低,右心室(RV)的壁厚远小于LV的壁厚。RV因此类似于被动导管,而不是泵。冠状动脉灌注在收缩期和舒张期间连续发生,这是由于脑室室内和壁内压力低。尽管存在解剖学差异,但RV和LV的机械行为非常相似。
摘要 目的:脑血管痉挛是蛛网膜下腔出血后发生的重要事件,具有显著的死亡率和发病率。本研究的目的是研究己酮可可碱对实验性蛛网膜下腔出血模型中血管痉挛的影响。方法:本研究将20只体重3000 – 3500 g的雄性新西兰白兔随机分成4组。第1组动物作为对照组。第2组动物仅静脉注射己酮可可碱,间隔12小时3次。第3组动物诱发蛛网膜下腔出血,不进行任何注射。第4组动物在蛛网膜下腔出血诱发后12、24和36小时静脉注射己酮可可碱(6 mg / kg),共3次。所有动物在第48小时处死并取出基底动脉。使用Spot for Windows 4.1版测量基底动脉血管直径、管壁厚度和管腔截面积。使用方差分析和Kruskall - Wallis检验进行统计分析。结果:第4组的平均基底动脉管腔截面积和管腔直径显著高于第3组(p < 0.05)。第3组的基底动脉管壁厚度高于其他组,这也具有统计学意义(p < 0.05)。结论:我们的研究表明,静脉注射己酮可可碱可显著减轻蛛网膜下腔出血后的血管痉挛。
慢性创伤性脑病(CTE)是一种与重复头部撞击(RHI)相关的神经退行性疾病,其特征在于血管周围的高磷酸化TAU(P-TAU)沉积物。尚不清楚血管损伤,血脑屏障泄漏和神经链球肿瘤在CTE发病机理中的作用。我们对细胞间粘附分子1(ICAM1),血管粘附分子1(VCAM1)和C反应蛋白(CRP)进行了定量免疫测定,内部和没有RHI和CTE的参与者的C反应蛋白(CRP)(CRP)小胶质细胞增多和tau病理学措施。与rhi-parposed and-naıwe对照相比,CTE的血管损伤相关标记ICAM1,VCAM1和CRP水平增加。ICAM1和CRP随RHI暴露持续时间增加(p <0.01),与小胶质细胞密度增加(P <0.001)和Tau病理学(AT8,P-TAU396,P-TAU202; P <0.05)有关。在组织学上,与低阶段CTE和对照组相比,高阶段CTE的微脉管系统,细胞外空间和星形胶质细胞的ICAM1染色显着增加。在所有暴露的个体中都存在血清白蛋白的多灶性周围免疫反应性。这些发现表明,血管损伤标记与RHI暴露,持续时间和小胶质细胞增多有关,CTE的升高和疾病严重程度的增加。
抽象多个因素需要形成功能性淋巴管。在这里,我们在开发斑马鱼面部淋巴网络的亚群体过程中发现了分泌的蛋白SVEP1和跨膜受体TIE1的重要作用。面部网络的这一特定方面与血管内皮生长因子C(VEGFC)信号无关,否则是所有其他淋巴床中最突出的信号轴。此外,我们发现SVEP1突变体的多个特异性和新发现的表型标志也存在于TIE1中,但在TIE2或VEGFC突变体中不存在。这些表型在头部和躯干的淋巴脉管系统中观察到,以及在降低的流动条件下的背侧纵向吻合血管的发展中。因此,我们的研究证明了在淋巴管发生过程中TIE1信号传导以及斑马鱼中血管发育的重要功能。此外,我们在淋巴管植物的早期步骤中显示了SVEP1和TIE1之间的遗传相互作用,并证明斑马鱼以及人类SVEP1/SVEP1蛋白与相应的TIE1/SVEP1蛋白在体外的tie1受体结合。由于最近在人青光眼患者中报道了SVEP1和TIE2的复合杂合突变,因此我们的数据在体内环境中的tie信号传导中表现出SVEP1的作用具有临床意义。