•TM‡”• TM‹ŽŽ ̃ƒ”›Ǥ '••‹„އ ƒ •TM‡”•ǣ ͳǤ –Š‹ –Ї ƒ”–‹...އ ‹• ƒ„'—– –Ї '”‡•‡ – „‡...ƒ—•‡ –Ї –‹ –އ ‹ ...Ž—†‡• –Ї TM'”† 今天。 ʹǥЇ'<... —“”‡'ˆ –š‡„ơ” times‡–šơifon- dו•............................................................................................................................》 11 ͳǤ ʹǤ ͵Ǥ ͶǤ ͷǤ Ǥ Ǥ ͺǤ
捕获并插入笔记中的图像................................................................................................................................................................................................................................................................................................................................... ........................................................................................................................................................... 7
摘要:近年来,越来越多的框架已应用于脑部计算机间技术技术,基于脑电图的机车成像(MI-EEG)正在迅速发展。但是,提高MI-EEG分类的准确性仍然是一个挑战。提出了一个深入的学习框架,即提议解决非平稳性质,激发发生的时间定位以及本文中MI-EEG信号的频段分布特征来解决非平稳性质。首先,根据C3和C4通道之间的逻辑对称关系,MI-EEG信号的时频图像扣除(IS)的结果用作分类器的输入。它既降低了冗余,又增加了输入数据的特征差异。第二,注意模块被添加到分类器中。作为基本分类器构建了卷积神经网络,并通过引入卷积块注意模块(CBAM)来自适应提取有关MI-EEG信号出现的时间位置和频率分布的信息。这种方法减少了无关的噪声干扰,同时增加了模式的鲁棒性。在BCI竞争IV数据集2B上评估了框架的性能,该数据集2B,平均准确性达到79.6%,平均KAPPA值达到0.592。实验结果验证了框架的可行性,并显示了MI-EEG信号分类的性能提高。
应迅速接受患者。关于NCCT图像的另一个问题,强度的范围非常宽且稀疏。需要在适合分类器的合适范围内重新销售。在本文中,我们旨在找到合适的窗口设置,用于通过使用Inpection v3在没有CTP的情况下对NCCT图像中缺血性中风的超急性和急性相分类。数据集以轴向切片制备。每个载玻片分类为正常或病变。由于训练样本的限制,将转移学习用于模型的重量初始化。结果表明该模型可以在35时窗口级别表现良好,而窗口宽度为95,90.84%的精度。关键字超急性缺血性中风,急性缺血性中风,非对比度颅骨计算机断层扫描,窗户CT,图像分类1。引言1.1研究中风的背景是全球死亡的第二大原因。在泰国,中风成为死亡或功能障碍的第一个原因。缺血性中风和出血中风是主要原因。缺血性中风是由凝块引起的,该凝块导致大脑的血液供应低(Musuka等人2015)。它分为四个阶段:超急性,急性,亚急性和慢性梗塞(Pressman BD和Tourje EJ 1987)(Nakano s and iseda t 2001)。但是,如果检测到较早的中风,它可能会增加生存和恢复的机会。神经影像受到医生的诊断。在泰国,CT被广泛使用,因为成本比MRI便宜。有许多类型的神经成像,例如磁共振成像(MRI)和计算机断层扫描(CT)。它成为诊断标准并广泛可用(Barber Pa等。2005),(Kidwell CS等人 1999)。 图像内容由称为Hounsfield单元(HU)的定量刻度表示,可以使用窗口过程将其映射到颜色尺度。 有两个参数可以调整以显示不同的组成,窗口级别(WL)和窗口宽度(WW)(Osborne等人。 2016),(Melisa Sia 2020),(Xue等人 2012)尽管CT快速又便宜,但仍有一个限制。 视觉上识别超急性和急性期中风的病变和位置的难度是问题,因为病变看起来与正常组织相似。 以这种方式,一种称为计算机断层灌注(CTP)的技术可间接显示出流向脑实质的流动或状态(Mortimer等人, 2013)使用造影剂。 不幸的是,这项技术的局限性是专家,每家医院都可能无法使用。 因此,对医学图像深度学习的最新研究的大多数研究都旋转了深度学习模型对有助于解释多种疾病诊断的病变进行分类或分割的能力(Clèrigues等 2019),(Cheon等人 2019),(Meier等人 2019),(Mirtskhulava等人 2015),脑肿瘤(Nadeem等人 2020),肺癌(Weng等人 2017),Retina(Christopher等人 2018)。2005),(Kidwell CS等人1999)。 图像内容由称为Hounsfield单元(HU)的定量刻度表示,可以使用窗口过程将其映射到颜色尺度。 有两个参数可以调整以显示不同的组成,窗口级别(WL)和窗口宽度(WW)(Osborne等人。1999)。图像内容由称为Hounsfield单元(HU)的定量刻度表示,可以使用窗口过程将其映射到颜色尺度。有两个参数可以调整以显示不同的组成,窗口级别(WL)和窗口宽度(WW)(Osborne等人。2016),(Melisa Sia 2020),(Xue等人 2012)尽管CT快速又便宜,但仍有一个限制。 视觉上识别超急性和急性期中风的病变和位置的难度是问题,因为病变看起来与正常组织相似。 以这种方式,一种称为计算机断层灌注(CTP)的技术可间接显示出流向脑实质的流动或状态(Mortimer等人, 2013)使用造影剂。 不幸的是,这项技术的局限性是专家,每家医院都可能无法使用。 因此,对医学图像深度学习的最新研究的大多数研究都旋转了深度学习模型对有助于解释多种疾病诊断的病变进行分类或分割的能力(Clèrigues等 2019),(Cheon等人 2019),(Meier等人 2019),(Mirtskhulava等人 2015),脑肿瘤(Nadeem等人 2020),肺癌(Weng等人 2017),Retina(Christopher等人 2018)。2016),(Melisa Sia 2020),(Xue等人2012)尽管CT快速又便宜,但仍有一个限制。视觉上识别超急性和急性期中风的病变和位置的难度是问题,因为病变看起来与正常组织相似。以这种方式,一种称为计算机断层灌注(CTP)的技术可间接显示出流向脑实质的流动或状态(Mortimer等人,2013)使用造影剂。不幸的是,这项技术的局限性是专家,每家医院都可能无法使用。因此,对医学图像深度学习的最新研究的大多数研究都旋转了深度学习模型对有助于解释多种疾病诊断的病变进行分类或分割的能力(Clèrigues等2019),(Cheon等人 2019),(Meier等人 2019),(Mirtskhulava等人 2015),脑肿瘤(Nadeem等人 2020),肺癌(Weng等人 2017),Retina(Christopher等人 2018)。2019),(Cheon等人2019),(Meier等人2019),(Mirtskhulava等人2015),脑肿瘤(Nadeem等人2020),肺癌(Weng等人2017),Retina(Christopher等人 2018)。2017),Retina(Christopher等人2018)。2018)和乳腺癌(Chougrad等人 尽管诊断解释的发展模型是具有挑战性的任务,但非解释性问题(例如增强图像和发展工作流程)也有助于改善患者的结果(Richardson等人。2018)和乳腺癌(Chougrad等人尽管诊断解释的发展模型是具有挑战性的任务,但非解释性问题(例如增强图像和发展工作流程)也有助于改善患者的结果(Richardson等人。2020)也可以在此任务中应用深度学习来实现治疗的最终目标。纸张的其余部分如下组织。CT窗口上的先前工作可以在第1节中找到。第2节阐明了研究的目的。第3节介绍了建议的方法,数据集,CT窗口过程,本工作中应用的分类。在第4节中解释了实验结果的细节,结论是在第5节中。1.2计算机断层扫描中的文献综述(CT)被称为评估梗塞中风的方式。窗口级别(WL)和窗口宽度(WW)的值是具有诊断准确性的重要因素。它可以揭示患者大脑的微妙异常。通常,CT图像上的默认脑窗口设置为40,窗口宽度为80(EE等人。2017),但是这个窗口很难审查梗塞,尤其是在中风的早期。因此,许多作品都在选择适当的窗口级别的合适值,并提出了检测缺血性中风的窗口宽度。
目的:本研究论文将通过考虑 CNN 在公共数据集上的优势对脑部 MRI 图像进行分类,以对良性和恶性肿瘤进行分类。材料和方法:深度学习(DL)方法由于在过去几年中的良好表现,在图像分类中变得越来越流行。卷积神经网络(CNN)通过多种方法可以在不使用手工制作的模型的情况下提取特征,并最终显示出更好的分类精度。所提出的混合模型在分类方面结合了 CNN 和支持向量机(SVM),在检测方面结合了基于阈值的分割。结果:先前研究的结果基于不同的模型,其精度为粗糙极限学习机(RELM)-94.233%,深度 CNN(DCNN)-95%,深度神经网络(DNN)和离散小波自动编码器(DWA)-96%,k 最近邻(kNN)-96.6%,CNN-97.5%。混合 CNN-SVM 的总体准确率为 98.4959%。结论:在当今世界,脑癌是最危险的疾病之一,死亡率最高,由于细胞生长异常、形状、方向和位置异常,检测和分类脑肿瘤是医学成像中的一项艰巨任务。磁共振成像 (MRI) 是用于脑肿瘤分析的典型医学成像方法。传统的机器学习 (ML) 技术根据放射科医生专家选择的一些手工特性对脑癌进行分类。这可能导致执行失败并降低算法的有效性。简要介绍
摘要 - 图像的细分在医疗,军事,监视等领域都有广泛的应用。这项工作段用于检测大脑中肿瘤的医学共振图像,其中工作中的三个部分都在图像中识别出三个部分。首先是头骨,第二是大脑,第三是肿瘤。介绍的论文包括以无监督的方式对图像分割的描述,其中建议的模型在没有任何训练的情况下确定图像的所有段。在这里,Wiener Filter通过从图像矩阵中删除不需要的信息来预处理输入图像。过滤的图像然后以智能水滴(IWD)遗传算法传递,用于查找图像段的代表性像素值集。IWD算法中的图形水滴运动具有代表性像素值设置的选择精度。 实验是在脑肿瘤的实际数据集中进行的,检测是通过参考地面真相图像来完成的。 建议的模型评估了平均精度值0.98和平均准确度为96%。 因此,当将结果与现有方法进行比较时,就可以获得建议的分割工作增加了分割评估参数值。IWD算法中的图形水滴运动具有代表性像素值设置的选择精度。实验是在脑肿瘤的实际数据集中进行的,检测是通过参考地面真相图像来完成的。建议的模型评估了平均精度值0.98和平均准确度为96%。因此,当将结果与现有方法进行比较时,就可以获得建议的分割工作增加了分割评估参数值。
肿瘤的自动分割仍然是医学图像处理领域一个相当令人兴奋的研究课题,并且它在形成正确诊断和辅助有效治疗方面发挥着重要作用。在本文中,介绍了一种用于分割 MRI 图像中的脑肿瘤的全自动系统。建议的系统由三部分组成:首先,使用过滤和形态学操作对图像进行预处理以增强对比度、消除噪音并从图像中去除头骨。其次,使用两种技术对图像进行分割,即模糊 c 均值聚类 (FCM) 和应用种子区域增长算法 (SGR)。第三,该方法提出了一个后处理步骤,使用形态学操作平滑分割区域边缘。对所提出的系统的测试涉及 233 名患者,其中包括 287 张 MRI 图像。随后,通过医生对轨迹的人工验证,将结果与传统分割技术(如FCM方法)进行比较,最终证明平均Dice系数为90.13%,平均Jaccard系数为82.60%。分割结果和定量数据分析证明了所提出的系统的有效性。