然而,当动眼控制恶化时,凝视跟踪设备的使用受到阻碍,因为最终发生在ALS的进展中,或者脑病变会影响眼部迁移率。在称为完全锁定状态(CLIS)[7]的条件下,眼睛运动可能会完全丢失。对于这些患者,维持沟通的唯一机会是依靠其他系统,例如基于EEG信号来控制AAC设备。这些方法通常称为大脑计算机界面(BCIS)[8]。在与某些BCI的与CLIS患者沟通方面的部分成功,尤其是基于事件相关电位的BCI [9,10]。但是,这些系统需要相对较长的准备工作以及专门的AAC促进者的存在,并且学习曲线困难,因为患者必须了解对特定生理信号的适当控制[11]。此外,它们通常非常昂贵。因此,需要更简单,更适合患者的方法。
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
脑干区域支持重要的身体功能,但它们的遗传结构和参与常见的脑部疾病仍在研究中。在这里,使用来自27,034个人的发现样本的成像基因数据,我们识别45个与脑干相关的遗传基因座,包括与中脑,PONS和髓质长的第一个相关的遗传基因座,并将其映射到305个基因。在7432名参与者的复制样本中,大多数基因座都显示出相同的效果方向,并且在标称阈值下是显着的。我们检测到脑干体积与八种精神病和神经系统疾病之间的遗传重叠。在5062名患有常见脑部疾病和11,257个健康对照组的患者的其他临床数据中,我们观察到精神分裂症,双相情感障碍,多发性硬化症,轻度认知障碍,痴呆和帕金森氏病的差异变化,以支持大脑系统区域及其遗传体系中的相关性。
吞咽困难是急性和出血性中风的公认并发症,急性中风患者中有37.0-78.0%的吞咽困难(1)。吞咽困难的患病率取决于评估的时间和方法(2)。在急性中风的患者中,它比通常假定患有这种情况的患者更常见,即使它们没有表现出与脱水有关的明显症状。抽吸肺炎的发生率在13.0%至33.0%之间,在densphagia的中风患者中更为常见(3,4,5)。吞咽受损与死亡率风险增加三倍有关,这主要是由于肺炎(6)。急性中风患者对吞咽困难的早期鉴定可显着降低肺炎吸入风险,肺炎是一种潜在的致命但可预防的并发症(7)。尽管吞咽困难经常在中风后的几天到一周内消失,但研究口咽吞咽的早期生理变化对于使用床边检查和无创筛查方法的早期诊断至关重要(7,9,10)。尽管如此,第一个月中,有2-12%的中风患者继续遭受吞咽困难,而中风后3个月仍可能在吞咽(11,12,13,14)中遇到7%的痛苦(11,12,13,14)。轻度吞咽困难(15)。中风区域在吞咽困难的患病率中起着重要作用,吞咽困难在颈动脉受累的患者中非常普遍(8)。大约25%的中风是由脑干病变引起的,其中吞咽困难是经常的结果(16)。与半球中风的脑干(BSS)患者相比,吞咽困难往往更为严重,并且不太可能自发解决。尽管已经研究了与吞咽困难有关的横向髓质梗塞(LMI),但很少有研究探索其他脑干地区的吞咽困难(17,18)。This study aimed to investigate voluntary swallowing in patients with acute BSS using electrophysiological techniques to identify the pathophysiological changes associated with neurogenic oropharyngeal dysphagia, to elucidate the spectrum and prevalence of both subclinical (acute transient dysphagia) and overt dysphagia in relation to the involvement of various brainstem regions, and to determine whether acute temporary通过临床程序确定的吞咽困难在一周内解决或持续出院。
临床表现主要分为伴随组的癫痫发作(47.6%)和非伴随组的局灶性神经功能障碍(59.1%)。阿拉伯国家摩洛哥的一项横断面研究介绍了该国 20 年的颅内海绵状瘤治疗经验,研究发现,20-40 岁年龄组的患者更为常见(58%,n=26),其中癫痫发作是最常见的症状(47%;n=21),局灶性神经功能障碍排在第二位(27%;n=12)。18 这些结果与 Kivelev 等人的报告一致,他们报告了 33 例伴随脑干海绵状瘤的患者,结果显示年龄组主要分布和癫痫发作是主要临床表现。12 Santos 等人报告了总共 238 例多发性脑海绵状瘤患者。 39 例(16.4%)患者报告合并脑干海绵状瘤。整个脑病的主要表现是
4。Espay AJ,Da Prat GA,Dwivedi AK等。解构正常压力脑积水:室性肿瘤作为神经模型的早期迹象。Ann Neurol。 2017; 82:503–13。 5。 Magdalinou NK,Ling H,Smith JD等。 正常压力脑力头或进行性核上麻痹? 临床病理病例系列。 j Neurol。 2013; 260:1009–13。 6。 Mueller C,Hussl A,Krismer F等。 神经播放性帕金森氏症患者的蜂鸟和早晨的荣耀标志的诊断准确性。 帕金森主义关系疾病。 2018; 54:90–94。 7。 Quattrone A,Morelli M,Nigro S等。 一种新的MR成像指数,用于分化进行性核上麻痹与帕金森氏病。 帕金森主义关系疾病。 2018; 54:3–8。 8。 Quattrone A,Nicoletti G,Messina D等。 MR成像指数用于分化进行性核上麻痹与帕金森氏病和多个系统萎缩的帕金森氏症变体。 放射学。 2008; 246:214–21。 9。 Kockum K,Lilja-Lund O,Larsson EM等。 特发性正常压力脑积水辐射:用于结构化评估的放射量表。 EUR J NEUROL。 2018; 25:569–76。 10。 Virhammar J,Laurell K,Cesarini KG等。 在108例特发性正常压力脑清脑患者中,MRI发现的术前预后值。 ajnr am j neuroradiol。 11。Ann Neurol。2017; 82:503–13。5。Magdalinou NK,Ling H,Smith JD等。正常压力脑力头或进行性核上麻痹?临床病理病例系列。j Neurol。2013; 260:1009–13。6。Mueller C,Hussl A,Krismer F等。神经播放性帕金森氏症患者的蜂鸟和早晨的荣耀标志的诊断准确性。帕金森主义关系疾病。2018; 54:90–94。7。Quattrone A,Morelli M,Nigro S等。一种新的MR成像指数,用于分化进行性核上麻痹与帕金森氏病。帕金森主义关系疾病。2018; 54:3–8。8。Quattrone A,Nicoletti G,Messina D等。MR成像指数用于分化进行性核上麻痹与帕金森氏病和多个系统萎缩的帕金森氏症变体。放射学。2008; 246:214–21。 9。 Kockum K,Lilja-Lund O,Larsson EM等。 特发性正常压力脑积水辐射:用于结构化评估的放射量表。 EUR J NEUROL。 2018; 25:569–76。 10。 Virhammar J,Laurell K,Cesarini KG等。 在108例特发性正常压力脑清脑患者中,MRI发现的术前预后值。 ajnr am j neuroradiol。 11。2008; 246:214–21。9。Kockum K,Lilja-Lund O,Larsson EM等。特发性正常压力脑积水辐射:用于结构化评估的放射量表。EUR J NEUROL。2018; 25:569–76。10。Virhammar J,Laurell K,Cesarini KG等。在108例特发性正常压力脑清脑患者中,MRI发现的术前预后值。ajnr am j neuroradiol。11。2014; 35:2311–18。Ohara M,Hattori T,Yokota T.进行性核上麻痹经常发展特发性正常压力脑清脑液样磁共振成像特征。EUR J NEUROL。2020; 27:1930–36。12。Onder H,Kocer B,Turan A等。 特发性正常压力脑积水和进行性核上核瘫痪之间的神经影像学发现的重叠。 Ann Indian Acad Neurol。 2022; 25:1087–91。 13。 君士坦丁字VC,Paraskevas GP,Velonakis G等。 特发性正常压力脑清脑中的中脑 - 脑化学:一种进行性上核瘫痪模仿。 acta neurol扫描。 2020; 141:328–34。 14。 Virhammar J,BlohméH,Nyholm D等。 中脑区域和来自脑部MRI的蜂鸟标志在进行性核上麻痹和特发性正常压力脑积水中。 j神经影像学。 2022; 32:90–96。 15。 以色列H,Carlberg B,WikkelsöC等。 INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。 神经病学。 2017; 88:577–85。 16。 Stankovic I,Krismer F,Jesic A等。 多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。 MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。Onder H,Kocer B,Turan A等。特发性正常压力脑积水和进行性核上核瘫痪之间的神经影像学发现的重叠。Ann Indian Acad Neurol。 2022; 25:1087–91。 13。 君士坦丁字VC,Paraskevas GP,Velonakis G等。 特发性正常压力脑清脑中的中脑 - 脑化学:一种进行性上核瘫痪模仿。 acta neurol扫描。 2020; 141:328–34。 14。 Virhammar J,BlohméH,Nyholm D等。 中脑区域和来自脑部MRI的蜂鸟标志在进行性核上麻痹和特发性正常压力脑积水中。 j神经影像学。 2022; 32:90–96。 15。 以色列H,Carlberg B,WikkelsöC等。 INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。 神经病学。 2017; 88:577–85。 16。 Stankovic I,Krismer F,Jesic A等。 多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。 MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。Ann Indian Acad Neurol。2022; 25:1087–91。13。君士坦丁字VC,Paraskevas GP,Velonakis G等。特发性正常压力脑清脑中的中脑 - 脑化学:一种进行性上核瘫痪模仿。acta neurol扫描。2020; 141:328–34。14。Virhammar J,BlohméH,Nyholm D等。中脑区域和来自脑部MRI的蜂鸟标志在进行性核上麻痹和特发性正常压力脑积水中。j神经影像学。2022; 32:90–96。15。以色列H,Carlberg B,WikkelsöC等。 INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。 神经病学。 2017; 88:577–85。 16。 Stankovic I,Krismer F,Jesic A等。 多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。 MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。以色列H,Carlberg B,WikkelsöC等。INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。 神经病学。 2017; 88:577–85。 16。 Stankovic I,Krismer F,Jesic A等。 多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。 MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。INPH中的血管风险因素:一项前瞻性病例对照研究(INPH挤压研究)。神经病学。2017; 88:577–85。16。Stankovic I,Krismer F,Jesic A等。多PLE系统萎缩中的认知障碍:MDS多系统萎缩(MODIMSA)研究组的神经心理学工作组的位置陈述。MOV DISORD。 2014; 29:857–67。 17。 FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。MOV DISORD。2014; 29:857–67。17。FällmarD,Andersson O,Kilander L等。 流体屏障中枢神经系统。 2021; 18:35。 18。 Fu MH,Huang CC,Wu Klh等。FällmarD,Andersson O,Kilander L等。流体屏障中枢神经系统。2021; 18:35。18。Fu MH,Huang CC,Wu Klh等。Fu MH,Huang CC,Wu Klh等。与特发性正常压力脑积水相关的成像特征,即使与血管痴呆和非典型帕金森 - ISM相比,也具有很高的特异性。特发性北压脑电图脑清晰的MRI特征的较高流行率在渐进性上透明麻痹中:成像提醒着非典型的帕金森氏症。大脑行为。2023; 13:e2884。19。Chui HC,Victoroff JI,Margolin D等。 诊断的标准是加利福尼亚州阿尔茨海默氏病诊断和治疗中心提出的缺血性血管性痴呆。 神经病学。 1992; 42(3 pt 1):473–80。 20。 Gilman S,Wenning GK,Low PA等。 关于诊断多系统萎缩的第二次共识陈述。 神经病学。 2008; 71:670–76。 21。 Litvan I,Agid Y,Calne D等。 进行性核上麻痹(Steele-Richardson-Olszewski综合征)诊断的临床研究标准:Ninds-SPSP国际研讨会的报告。 neu-rology。 1996; 47:1–9。 22。 Relkin N,Marmarou A,Klinge P等。 诊断特发性正常压力脑积水。 神经外科。 2005; 57:S4–16;讨论II-V。Chui HC,Victoroff JI,Margolin D等。诊断的标准是加利福尼亚州阿尔茨海默氏病诊断和治疗中心提出的缺血性血管性痴呆。神经病学。1992; 42(3 pt 1):473–80。20。Gilman S,Wenning GK,Low PA等。关于诊断多系统萎缩的第二次共识陈述。神经病学。2008; 71:670–76。 21。 Litvan I,Agid Y,Calne D等。 进行性核上麻痹(Steele-Richardson-Olszewski综合征)诊断的临床研究标准:Ninds-SPSP国际研讨会的报告。 neu-rology。 1996; 47:1–9。 22。 Relkin N,Marmarou A,Klinge P等。 诊断特发性正常压力脑积水。 神经外科。 2005; 57:S4–16;讨论II-V。2008; 71:670–76。21。Litvan I,Agid Y,Calne D等。 进行性核上麻痹(Steele-Richardson-Olszewski综合征)诊断的临床研究标准:Ninds-SPSP国际研讨会的报告。 neu-rology。 1996; 47:1–9。 22。 Relkin N,Marmarou A,Klinge P等。 诊断特发性正常压力脑积水。 神经外科。 2005; 57:S4–16;讨论II-V。Litvan I,Agid Y,Calne D等。进行性核上麻痹(Steele-Richardson-Olszewski综合征)诊断的临床研究标准:Ninds-SPSP国际研讨会的报告。neu-rology。1996; 47:1–9。22。Relkin N,Marmarou A,Klinge P等。诊断特发性正常压力脑积水。神经外科。2005; 57:S4–16;讨论II-V。2005; 57:S4–16;讨论II-V。
此预印本版的版权持有人于2024年8月7日发布。 https://doi.org/10.1101/2024.08.04.606499 doi:biorxiv Preprint
摘要:越来越多的环境问题以及采用循环经济的需求突出了废物载体对资源回收的重要性。微生物联盟的生物技术在生物量的生物量中取得了重大发展,这些资源是废物生物量的宝贵资源,这些资源是石化衍生产品的合适替代品。这些基于微生物财团的过程是在自上而下或自下而上的工程方法之后设计的。自上而下的方法是一种经典的方法,它使用环境变量有选择地引导现有的微生物联盟以实现目标功能。虽然高通量测序使微生物群落的表征能够实现,但主要的挑战是将复杂的微生物相互作用解散并相应地操纵结构和功能。自下而上的方法使用了代谢途径的先前知识,并使用联盟合作伙伴之间的可能相互作用来设计和工程师合成微生物联盟。该策略对目标生物程序的财团的组成和功能提供了一定的控制,但是Challenges仍处于最佳装配方法和长期稳定性中。在这篇综述中,我们介绍了使用自上而下和自下而上的微生物组工程方法进一步改进的进步,挑战和机会。作为底层的方法是一个新的浪费式概念,本评论探讨了合成微生物联盟的组装和设计,以优化微生物联盟的生态工程原理以及有效的Con- Cons-Deption的代谢工程方法。还集成了自上而下的方法和自下而上的方法,以及代谢建模的发展,以预测和优化伴侣功能。一句话摘要:这篇评论突出了微生物联盟驱动的废物价值通过自上而下和自下而上的设计方法进行生物制造,并描述了策略,工具和未探索的机会,以优化此类财团的设计和稳定性。
我们给了您这个事实表,因为您的宝宝已被转介到听觉脑干响应(ABR)测试中。它说明了什么是ABR测试以及宝宝约会时会发生什么,以便您知道会发生什么并可以帮助您的宝宝做好准备。我们希望它将有助于回答您可能遇到的一些问题。如果您还有其他问题或疑虑,请与我们团队的成员交谈。
测试期间会发生什么?一旦您的孩子入睡,我们会将粘性垫(电极)贴在他们的额头和耳后,并设置我们的设备开始测试。我们将通过柔软的耳塞或耳机将不同音量的声音播放到您孩子的耳朵里,并在我们的电脑屏幕上记录他们对声音的反应。测试完成后,我们会轻轻地取下粘性垫并收起我们的设备。