在复杂环境中定位声源的能力对于通信和导航至关重要。空间听证会主要依赖于两只耳朵之间声音到达时间的差异的比较,即播出时间差异(ITD)。听力障碍对声音本地化非常有害。尽管人工耳蜗(CIS)成功地恢复了许多关键的听力能力,但通过ITD检测与双边顺式合理的定位仍然很差。根本原因尚不清楚。神经元,ITD敏感性是通过专门的脑干神经元进行的两只耳朵的兴奋性和抑制输入之间的巧合检测而产生的。由于在CI刺激过程中缺乏电生理学脑干记录,目前尚不清楚在多大程度上是由双耳比较神经元引起的,或者已经在输入水平上引起。在这里,我们使用自下而上的方法比较CI听力动物模型中电气和声学刺激之间的响应特征。在Gerbils中进行细胞外单神经元记录,我们发现在电脉冲刺激期间,兴奋性和抑制性脑干输入对双耳比较神经元的兴奋性和抑制性脑干输入中等高度渗透性。这一发现确定,双耳处理阶段必须应对CI刺激期间的输入统计量的高度变化。为了估计这些影响对ITD灵敏度的后果,我们使用了听觉脑干的计算模型。调整模型参数以使其响应特性与我们在任何一种刺激类型期间的生理数据相匹配时,该模型预测,即使对于超专有输入,也可以保持对电脉冲的敏感性。然而,与声学相比,该模型在电刺激过程中表现出严重改变的空间敏感性:
结果:测量不同脑干结构的内部和内部可靠性显示出良好至优秀的可靠性(组内相关系数 = 0.785 – 0.988)。脑桥面积、小脑中脚和小脑上脚宽度、中脑与脑桥比值和 MRPI 存在显著的性别差异(全部,P ,.001;Cohen D = 0.44 – 0.98),但中脑面积无差异(P = .985)。在男女两性中,几项脑干测量值与年龄、身高、体重和身体质量指数之间存在显著的非常弱至弱相关性。然而,没有发现由这些变量引起的分布的系统性差异,并且由于年龄具有最高和最一致的相关性,因此创建了脑干测量的年龄/性别特定百分位数。
摘要 将注意力从威胁性事件上移开可以降低痛觉。这种注意力镇痛作用涉及从前扣带回 (ACC) 到蓝斑,以及从 ACC 到中脑导水管周围灰质 (PAG) – 延髓腹内侧前部 (RVM) 的平行下行控制通路,表明去甲肾上腺素能或阿片类神经调节剂可能发挥作用。为了确定哪种通路调节人类的痛觉活动,我们在三个疗程中同时使用了全脑-脊髓药理学-fMRI (N = 39)。有害的热前臂刺激产生背角 (DH) 的躯体激活,其活动与疼痛报告相关并反映注意力疼痛调节。相邻簇中的活动报告了任务与有害刺激之间的相互作用。有效连接分析表明,ACC 与 PAG 和 RVM 相互作用以调节脊髓活动。用纳曲酮阻断内源性阿片类药物会损害注意力镇痛并破坏 RVM-脊髓和 ACC-PAG 连接。用瑞波西汀增强去甲肾上腺素不会改变注意力镇痛。认知疼痛调节涉及阿片类 ACC-PAG-RVM 下降控制,从而抑制脊髓伤害性活动。
将人工神经网络 (ANN) 与脑成像技术的输出进行比较,最近在 (计算机) 视觉和基于文本的语言模型方面取得了实质性进展。在这里,我们提出了一个框架来比较口语语言表征的生物和人工神经计算,并提出了对这一范式的几个新挑战。使用 Beguˇs 和 Zhou (2021b) 提出的技术,我们可以分析人工神经网络中间卷积层中任何声学属性的编码。这使我们能够以一种比大多数现有专注于相关性和监督模型的提案更易于解释的方式测试大脑和人工神经网络之间语音编码的相似性。我们将对原始语音进行训练的完全无监督深度生成模型(生成对抗网络架构)引入大脑和 ANN 比较范式,这使得可以测试人类语音的产生和感知原理。我们提出了一个框架,将测量人脑复杂听觉脑干反应 (cABR) 的电生理实验与深度卷积网络中的中间层并行。我们比较了 cABR 相对于脑干实验中的刺激的峰值延迟,以及中间卷积层相对于深度卷积网络中的输入/输出的峰值延迟。我们还检查并比较了之前的语言接触对 cABR 峰值延迟和语音属性的中间卷积层的影响。具体而言,英语和西班牙语使用者对语音属性 (即 VOT =10 毫秒) 的感知不同,有声 (例如 [ba]) 和无声 (例如 [pa])。至关重要的是,英语和西班牙语使用者的 cABR 峰值延迟到 VOT 语音属性是不同的,并且英语训练的计算模型和西班牙语训练的计算模型之间的中间卷积层的峰值延迟也不同。根据八个训练网络(包括复制实验)的结果,人类大脑和中间卷积网络在峰值延迟编码方面表现出了相当大的相似性。所提出的技术可用于比较人类大脑和中间卷积层之间对任何声学特性的编码。
数十年的研究将多巴胺神经元视为大脑的奖励中心,虐待药物“劫持”会导致成瘾。的确,尼古丁在腹侧偏段区域多巴胺神经元上作用于烟碱乙酰胆碱受体,以增加多巴胺的释放,从而增加奖励和愉悦感。然而,最近的研究表明,多巴胺神经元的一部分信号厌恶,这与普遍认为多巴胺神经元仅介导奖励的普遍看法相反。在高剂量下,尼古丁是厌恶的,并且了解这种剂量依赖性转换如何导致治疗尼古丁成瘾的新见解。为了剖析介导尼古丁厌恶作用的神经回路,我对VTA多巴胺神经元,其输入的详细解剖学,电生理和行为研究进行了详细的解剖学,电生理和行为研究。使用体内钙成像,我证明了高剂量的尼古丁通过在规范奖励信号的侧侧侧侧途径中抑制DA释放来编码厌恶,并通过增加厌恶信号的中间途径中的DA释放来编码厌恶。i将脑干的后dodorsal temgentum(LDT)引入了VTA,该抑制作用在刺激时驱动厌恶行为并被厌食剂量激活的尼古丁剂量激活。重要的是,与完整的LDT的动物相比,当胃核中的染色较差时,我观察到了伏托核的钝性染色,这是对厌恶性尼古丁的响应。一起,这项工作提供了对电路机制的新颖见解,即高剂量的尼古丁如何通过增加厌恶信号传导和减少奖励信号传导来引起厌恶,并且在尼古丁反应的背景下,脑干的抑制性输入可能是中元途径的重要调节剂。
现代中枢神经系统肿瘤分类结合了遗传和组织学特征,以形成临床相关的综合诊断。1 以前仅根据放射学发现诊断和治疗的弥漫性内在性脑桥神经胶质瘤 (DIPG) 等病变现在可能需要活检才能获得准确诊断并确定临床试验资格。2,3 因此,神经外科医生需要提供安全、微创且经济高效的解决方案来获取适合分子分析的组织。脑干和丘脑等重要部位的病变通常难以通过开放式手术方法进入,需要高精度立体定向工具才能安全地进行活检。基于框架的立体定向历来是成功执行这些程序的黄金标准
以便更好地确定脑干外科手术的安全进入区。12、13然而,这种整体方法没有考虑到病理学中经常发生的解剖扭曲(即没有人对正常脑干进行手术)。不幸的是,大多数基于立体定向成像的脑图谱都强调了皮质、白质或间脑内特定功能性神经外科手术目标的分辨率。14-18基于图像的脑干内部解剖详细分区仍然很少。19、20广泛使用的FreeSurfer(http://surfer.nmr.mgh.harvard.edu)分区为整个脑干提供了单个图谱标签,而较新的脑干子结构算法仅将脑干分为“中脑”、“脑桥”和“延髓”。21-23
以便更好地确定脑干外科手术的安全进入区。12、13然而,这种整体方法没有考虑到病理学中经常发生的解剖扭曲(即没有人对正常脑干进行手术)。不幸的是,大多数基于立体定向成像的脑图谱都强调了皮质、白质或间脑内特定功能性神经外科手术目标的分辨率。14-18基于图像的脑干内部解剖详细分区仍然很少。19、20广泛使用的FreeSurfer(http://surfer.nmr.mgh.harvard.edu)分区为整个脑干提供了单个图谱标签,而较新的脑干子结构算法仅将脑干分为“中脑”、“脑桥”和“延髓”。21-23
1。Abbreviations ABR Auditory brainstem response AC Air-conduction ANSD Auditory Neuropathy Spectrum Disorder ASSR Auditory steady state response BC Bone-conduction ckABR Click-evoked ABR CM Cochlear microphonic CR Clear Response dBeHL Estimated PTA from electrophysiological thresholds dBnHL Decibels Hearing Level (the “n” is a hangover from days before an international calibration reference was available,所使用的量表源自“名义”或“正常”研究nhl已被惯例保留,以将其与长时间持续时间刺激的DBHL区分开)ecochg电骨化学图像电屏埃克斯式播放器(NHSP的电子记录系统),现在由S4H INC替换为S4H INC不确定的NBCHIRP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP NHSP ENKERTS ENKERTS ENKERTS RETERNT ENGERNT ENKERNT ENDERM ENDERT ENGERNT ENGERNT ENGERNERS RED ERSENT REDERNENT ENGERNENT等价等于阈值声音级别S4H智能4听力:用于记录新生儿听力测试结果的电子数据库TPABR音调PIP诱发ABR