摘要 — 随着神经工程技术的快速发展,社会对数字心理健康的需求也迅速上升。虽然社会需要利用基于可靠神经科学证据的尖端技术,但准确性和易用性的权衡严重分裂了学术界和工业界。在这里,我们提供模拟和经验证据来揭示头皮上脑电图电极的位置和数量如何影响捕获头皮范围独立成分 (IC) 的准确性。基于从 64 通道脑电图电极获得的 IC 的逆权重头皮地形,对现有的七个脑电图耳机的数量和位置进行了空间相似性分析。结果显示,随着通道数量和位置的增加,相似性呈现出独特的 S 形恶化。我们提供了一个有用的计算模型,用于量化特定耳机的假设质量。我们的量化方法为学术可靠性和社会需求之间的竞争提供了和解,这是 BCI(脑机接口)应用中的一个基本方面。
摘要这项研究的主要目的是通过开发包括脑部计算机界面(BCI)和客户端Vidinexus的互动屏幕在内的原型来探索以改善博物馆访问者的体验和参与的选项。这是通过遵循重点关注研究的三个不同方面的方法来完成的;博物馆和艺术,BCI和原型。前两个方面是背景文献研究的重点。这些发现用于指导原型开发的创作过程。系统的原型,包括交互式测验,它根据由EEG设备测量的选择和参与水平与访问者相匹配。该原型是在研究的构想,规范和实现阶段创建的;并在评估阶段进行了测试。
抽象虚拟现实(VR)是一项允许用户体验模拟真实或虚构场景的多感觉和交互式环境的技术。仍然辩论了不同的VR沉浸式技术神学对心理工作量(MWL)的影响,即执行任务所需的资源数量;但是,从未利用脑电图在这种情况下的潜在作用。本文旨在调查在VR环境中对MWL进行认知任务的影响,这是通过使用多模式的方法进行的,其特征在于以不同程度的沉浸式来进行,这些方法通过生理EEG测量对MWL进行了良好评估的主观评估。提出了基于N-BACK测试的认知任务,以比较使用头部安装显示器(HMD)或桌面计算机展示Stim uli的特定裤子的性能和MWL。任务具有四个不同的复杂度(N¼1或2具有视觉或视觉和听觉刺激)。二十七名健康参与者都参加了这项研究,并在两种情况下都执行了任务。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。 错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。 任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。 EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG MWL指数显示出显着增加,特别是与休息相比。不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。但是,在大多数情况下,HMD降低了EEG衍生的MWL,表明较低的认知负载。总而言之,HMD可能会减少某些任务的认知负荷。如脑电图MWL指数所示,MWL的降低水平可能对基于VR的应用程序的设计和未来评估有影响。
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。
摘要 — 目标:当存在多个声源时,当前助听器中的降噪算法缺乏有关用户关注的声源的信息。为了解决这个问题,它们可以与听觉注意解码 (AAD) 算法相辅相成,该算法使用脑电图 (EEG) 传感器解码注意力。最先进的 AAD 算法采用刺激重建方法,其中关注源的包络从 EEG 重建并与各个源的包络相关。然而,这种方法在短信号段上表现不佳,而较长的片段在用户切换注意力时会产生不切实际的长检测延迟。方法:我们提出使用滤波器组公共空间模式滤波器 (FB-CSP) 解码注意力的方向焦点作为替代 AAD 范式,它不需要访问干净的源包络。结果:提出的 FB-CSP 方法在短信号段上的表现优于刺激重建方法,在相同任务上的表现也优于卷积神经网络方法。我们实现了高精度(1 秒窗口为 80%,准瞬时决策为 70%),足以实现低于 4 秒的最小预期切换持续时间。我们还证明解码器可以适应来自未见对象的未标记数据,并且仅使用位于耳朵周围的部分 EEG 通道来模拟可穿戴 EEG 设置。结论:提出的 FB-CSP 方法可以快速准确地解码听觉注意力的方向焦点。意义:在非常短的数据段上实现高精度是朝着实用的神经引导听力设备迈出的重要一步。
抽象虚拟现实(VR)是一项允许用户体验模拟真实或虚构场景的多感觉和交互式环境的技术。仍然辩论了不同的VR沉浸式技术神学对心理工作量(MWL)的影响,即执行任务所需的资源数量;但是,从未利用脑电图在这种情况下的潜在作用。本文旨在调查在VR环境中对MWL进行认知任务的影响,这是通过使用多模式的方法进行的,其特征在于以不同程度的沉浸式来进行,这些方法通过生理EEG测量对MWL进行了良好评估的主观评估。提出了基于N-BACK测试的认知任务,以比较使用头部安装显示器(HMD)或桌面计算机展示Stim uli的特定裤子的性能和MWL。任务具有四个不同的复杂度(N¼1或2具有视觉或视觉和听觉刺激)。二十七名健康参与者都参加了这项研究,并在两种情况下都执行了任务。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。 错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。 任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。 EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG MWL指数显示出显着增加,特别是与休息相比。不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。但是,在大多数情况下,HMD降低了EEG衍生的MWL,表明较低的认知负载。总而言之,HMD可能会减少某些任务的认知负担。如脑电图MWL指数所示,MWL的降低水平可能对基于VR的应用程序的设计和未来评估有影响。
研究成果概要(中文):在本研究中,我们旨在开发一种使用 P300 和稳态视觉诱发电位 (SSVEP) 的混合型输入系统,这两种技术在利用脑电图进行字符输入时被广泛使用。该系统发挥了 P300 和 SSVEP 的优势,并弥补了彼此的不足。首先,我们通过视觉刺激呈现建立了一种同时生成方法。接下来,利用呈现方法,我们确认可以通过控制候选字符的呈现时间来有效分离两种不同的脑电图。我们已经证明,我们的原创方法可以实现高速输入。然而,差异程度因对象而异。这是未来需要解决的一个挑战。
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
摘要 脑机接口 (BCI) 是一种将大脑活动转化为操作技术命令的系统。脑电图 (EEG) BCI 的常见设计依赖于 P300 事件相关电位 (ERP) 的分类,这是一种由常见非目标刺激中罕见的目标刺激引起的反应。现有的 ERP 分类器很少直接探索神经活动的潜在机制。为此,我们对 P300 ERP-BCI 设计下的多通道真实 EEG 信号的概率分布进行了新颖的贝叶斯分析。我们的目标是识别神经活动的相关时空差异,这为 P300ERP 反应提供了统计证据,并有助于设计高效、准确的个性化 BCI。作为我们对单个参与者分析的一项重要发现,视觉皮层周围通道的目标 ERP 在刺激后约 200 毫秒达到负峰值的后验概率为 90%。我们的分析确定了 BCI 拼写器的五个重要通道(PO7、PO8、Oz、P4、Cz),从而实现了 100% 的预测准确率。从对其他九名参与者的分析中,我们一致地选择了确定的五个通道,并且选择频率对带通滤波器和内核超参数的微小变化具有稳健性。本文的补充材料可在线获取。
