嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
摘要 — 目标:当存在多个声源时,当前助听器中的降噪算法缺乏有关用户关注的声源的信息。为了解决这个问题,它们可以与听觉注意解码 (AAD) 算法相辅相成,该算法使用脑电图 (EEG) 传感器解码注意力。最先进的 AAD 算法采用刺激重建方法,其中关注源的包络从 EEG 重建并与各个源的包络相关。然而,这种方法在短信号段上表现不佳,而较长的片段在用户切换注意力时会产生不切实际的长检测延迟。方法:我们提出使用滤波器组公共空间模式滤波器 (FB-CSP) 解码注意力的方向焦点作为替代 AAD 范式,它不需要访问干净的源包络。结果:提出的 FB-CSP 方法在短信号段上的表现优于刺激重建方法,在相同任务上的表现也优于卷积神经网络方法。我们实现了高精度(1 秒窗口为 80%,准瞬时决策为 70%),足以实现低于 4 秒的最小预期切换持续时间。我们还证明解码器可以适应来自未见对象的未标记数据,并且仅使用位于耳朵周围的部分 EEG 通道来模拟可穿戴 EEG 设置。结论:提出的 FB-CSP 方法可以快速准确地解码听觉注意力的方向焦点。意义:在非常短的数据段上实现高精度是朝着实用的神经引导听力设备迈出的重要一步。
摘要 — 随着神经工程技术的快速发展,社会对数字心理健康的需求也迅速上升。虽然社会需要利用基于可靠神经科学证据的尖端技术,但准确性和易用性的权衡严重分裂了学术界和工业界。在这里,我们提供模拟和经验证据来揭示头皮上脑电图电极的位置和数量如何影响捕获头皮范围独立成分 (IC) 的准确性。基于从 64 通道脑电图电极获得的 IC 的逆权重头皮地形,对现有的七个脑电图耳机的数量和位置进行了空间相似性分析。结果显示,随着通道数量和位置的增加,相似性呈现出独特的 S 形恶化。我们提供了一个有用的计算模型,用于量化特定耳机的假设质量。我们的量化方法为学术可靠性和社会需求之间的竞争提供了和解,这是 BCI(脑机接口)应用中的一个基本方面。
摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
脑电图 (EEG) 信号的分析总是涉及量化问题;这些问题可能涉及主频率的精确值以及从同时或不同时间记录的两个对称推导信号之间的相似性。在这些例子中,有一个问题只能通过对 EEG 信号进行测量来解决。没有这样的措施,EEG 评估仍然是主观的,很难导致逻辑系统化。经典的 EEG 评估总是涉及借助简单的标尺测量频率和/或幅度。这种简单方法的局限性很大,特别是当必须评估大量 EEG 数据并且强烈感受到数据缩减的需要时,以及当提出相当复杂的问题时,例如 EEG 信号的变化是否与内部或外部因素有关,以及不同推导中发生的 EEG 现象有多同步。要清楚地回答这些问题,需要某种形式的 EEG 分析。然而,这种分析不仅是一个量化问题,还涉及模式识别的元素。每一位脑电图医师都知道,对于诸如尖峰、尖波或其他异常模式等脑电图现象,有时很难引用精确的测量值;经验丰富的专家只能通过“目测”来检测它们。这些类型的问题可以通过模式识别分析技术解决,其原理是必须测量脑电图现象的特征。在特征提取阶段之后,将现象分类为不同的组。因此,脑电图分析不仅意味着简单的量化,还包括特征提取和分类。脑电图分析的主要目的是通过数字或图形形式的客观数据支持脑电图医师的评估。然而,EEG 分析可以走得更远,实际上可以扩展脑电图师的能力,为他们提供新的工具,使他们能够执行诸如癫痫患者长时间 EEG 的定量分析以及睡眠和精神药理学研究等困难任务。分析方法的选择主要取决于应用的目标,但也必须考虑预算限制。制定适当的策略取决于一些实际情况,例如分析结果是否必须实时在线提供,还是可以离线呈现。在过去,前一种要求会带来相当大的问题,只有采用一种相当简单的分析形式才能解决;新计算机技术的发展提供了更可接受的解决方案。另一种
I.近年来,生物识别技术在日常生活中越来越多地使用。例如,在使用图形和面对图像登录智能手机中。但是,这种生物特征数据始终涉及身体表面。因此,可以使用数字设备(例如摄像机)轻松地被盗(捕获)。If the data are stolen, copies can be made.此外,填充和脸部识别假定仅一次性身份验证,这会导致SPOOFG的风险。使用其生物识别技术对系统的常规用户进行身份验证,即使用户被没有使用该系统许可的冒名顶替者替换,也无法根据一次性的身份验证使用生物识别方法检测SPOOFEF。为了解决这个问题,已经提出了连续的身份验证,因为它比一次性的身份验证更有效。作为适合连续身份验证的生物识别技术,脑波或脑电图(EEG)引起了人们的注意[1]。只要人还活着,信号总是会产生,因此可以连续测量此信息。此外,由于任何人都可以利用脑波,它们是最容易获得的生物识别数据。由于仅在人戴上脑波传感器时才能检测到脑波,因此其他人也无法秘密地窃取数据。但是,传统研究并未提及使用脑电波作为生物识别技术的应用。使用脑波需要用户佩戴脑波传感器,但是这需要时间,因为用户在移动头发的同时将许多电极设置在头皮上。例如,当用户输入房间,登录PC或使用ATM时,这是无法想象的。因此,作为生物识别技术的脑波不适用于一次性身份验证。另一方面,一旦用户佩戴
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。
摘要 脑机接口 (BCI) 是一种将大脑活动转化为操作技术命令的系统。脑电图 (EEG) BCI 的常见设计依赖于 P300 事件相关电位 (ERP) 的分类,这是一种由常见非目标刺激中罕见的目标刺激引起的反应。现有的 ERP 分类器很少直接探索神经活动的潜在机制。为此,我们对 P300 ERP-BCI 设计下的多通道真实 EEG 信号的概率分布进行了新颖的贝叶斯分析。我们的目标是识别神经活动的相关时空差异,这为 P300ERP 反应提供了统计证据,并有助于设计高效、准确的个性化 BCI。作为我们对单个参与者分析的一项重要发现,视觉皮层周围通道的目标 ERP 在刺激后约 200 毫秒达到负峰值的后验概率为 90%。我们的分析确定了 BCI 拼写器的五个重要通道(PO7、PO8、Oz、P4、Cz),从而实现了 100% 的预测准确率。从对其他九名参与者的分析中,我们一致地选择了确定的五个通道,并且选择频率对带通滤波器和内核超参数的微小变化具有稳健性。本文的补充材料可在线获取。
摘要:理论基础:静息状态范式经常应用于脑电图 (EEG) 研究;然而,它与无法控制参与者的思想有关。为了量化受试者在休息时的主观体验,引入了阿姆斯特丹静息状态问卷 (ARSQ),涵盖了十个思维游离维度。我们旨在估计主观体验与 EEG 的静息状态微状态之间的关联。方法:使用 197 名受试者的 5 分钟静息状态 EEG 数据来评估七个微状态类别的时间特性。采用贝叶斯相关方法来评估静息后评估的 ARSQ 域与微状态参数之间的关联。结果:揭示了舒适度、自我和躯体意识域与神经电微状态的时间特性之间的几种关联。舒适度与微状态 E 持续时间之间的正相关性显示出最强的证据 (BF 10 > 10);其余相关性显示出大量证据 (10 > BF 10 > 3)。结论:我们的研究表明,评估静息状态下发生的自发思维对于理解微状态所反映的内在大脑活动具有重要意义。