hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
脑电图是检测睡眠障碍的非常有效的工具。在文献调查中讨论了各种算法进步。信号采集,预处理,特征提取和分类是其实施的一般步骤。由于人工神经网络(ANN)非常适用于睡眠障碍的识别,因此无需明确的特征提取。ANN本质上能够理解数据中的基本模式。计算出的召回的值不过是在各自电极所做的读数的总体组合。随着数据的变化而变化。如今,通过选择最佳特征选择方法,该作品在优化电极数量方面正在进展。如今,通过选择最佳特征选择方法,该作品在优化电极数量方面正在进展。
神经控制接口是一项独特的全球技术,它彻底改变了控制和信号处理领域。这项技术有助于将人类和计算机联系起来,实现某些患者或人们难以实现的目标。在提议的实验中,脑信号被用来移动自动臂并执行各种任务,例如移动手的任何手指。为了实时为 3D 手臂机器人提供运动,我们获取了基于 10-20 国际系统的 EEG 数据,并使用 OpenBCI Wi-FI、OpenBCI 板将这些信号转发到处理计算机,并使用 OpenBCI GUI 和 Arduino Uno 控制伺服电机。此外,本文还介绍了一种脑电图 (EEG) - 一种帮助残疾人和老年人的智能轮椅控制系统。本文旨在使用脑机接口 (BCI) 耳机控制电动轮椅。这种轮椅可能对因脑脊髓切断而无法使用手或腿的残疾人有益。基本目标是将不同的面部表情与轮椅运动相匹配。该系统由 NeuroSky Mind Wave EEG 传感器线圈组成,该线圈与 Android 配对,并连接到语音中断电路,以防止轮椅意外发生故障或自动移动。脑机接口设计的系统通过实时实验研究进行评估,并应用于男性和女性,通过张开和握紧手进行诱导,验证过程也使用不同的频率和电压进行,实验结果表明该过程将按设计运行,具有极高的精度和高性能。
摘要:创伤性脑损伤(TBI)是死亡和残疾的常见原因。但是,现有的TBI诊断工具是主观的,或者需要广泛的临床设置和专业知识。相对较高的计算系统的大小以及与TBI相关的机器学习研究的有希望的结果相结合的可负担性和减少,使得创建紧凑和便携式系统以早期检测到TBI成为可能。这项工作描述了基于Raspberry Pi的便携式,实时数据采集和自动处理系统,该系统使用机器学习来有效识别TBI并自动从单渠道电脑电脑(EEG)信号中自动为睡眠阶段分数。我们讨论了可以使用数字转换器(ADC)的类似物对EEG信号进行数字数字化的系统的设计,实现和验证,并执行实时信号分类以检测到温和TBI(MTBI)的存在。我们利用卷积神经网络(CNN)和基于XGBoost的预测模型来评估系统的性能和降低系统的多功能性,以使用多种类型的预测模型运行。,对于TBI与控制条件,在16 s -64 S时期的分类时间小于1 s的分类时间中,峰分类精度超过90%。这项工作可以实现适合现场使用的系统的开发,而无需为早期TBI检测应用和TBI研究提供专门的医疗设备。此外,这项工作开放了实施连接的,实时TBI与健康和健康监测系统的途径。
需要遵循的一些指导原则包括:• 孩子在测试时应该有睡意。− 测试前一天晚上让孩子比平时晚睡 2 至 3 个小时。− 测试当天早晨让孩子比平时早起 2 至 3 个小时。− 3 岁以上的儿童在测试前一天晚上睡眠时间不应超过 5 个小时。• 孩子基本可以像平常一样吃喝。他们不能吃含咖啡因或高糖的食物或饮料。• 测试前一天晚上帮孩子洗头并冲洗头发。不要使用护发素、发胶或其他护发产品。• 根据需要携带以下物品:− 安慰物品,如奶嘴或毯子− 如果您的孩子仍使用奶瓶,请带上满满的奶瓶− 尿布• 如果您的孩子正在服用任何药物:− 请随身携带药物清单。− 除非孩子的医生另有指示,否则请在正常时间服药。测试会是什么样的?