脑电图 (EEG) 信号的分析总是涉及量化问题;这些问题可能涉及主频率的精确值以及从同时或不同时间记录的两个对称推导信号之间的相似性。在这些例子中,有一个问题只能通过对 EEG 信号进行测量来解决。没有这样的措施,EEG 评估仍然是主观的,很难导致逻辑系统化。经典的 EEG 评估总是涉及借助简单的标尺测量频率和/或幅度。这种简单方法的局限性很大,特别是当必须评估大量 EEG 数据并且强烈感受到数据缩减的需要时,以及当提出相当复杂的问题时,例如 EEG 信号的变化是否与内部或外部因素有关,以及不同推导中发生的 EEG 现象有多同步。要清楚地回答这些问题,需要某种形式的 EEG 分析。然而,这种分析不仅是一个量化问题,还涉及模式识别的元素。每一位脑电图医师都知道,对于诸如尖峰、尖波或其他异常模式等脑电图现象,有时很难引用精确的测量值;经验丰富的专家只能通过“目测”来检测它们。这些类型的问题可以通过模式识别分析技术解决,其原理是必须测量脑电图现象的特征。在特征提取阶段之后,将现象分类为不同的组。因此,脑电图分析不仅意味着简单的量化,还包括特征提取和分类。脑电图分析的主要目的是通过数字或图形形式的客观数据支持脑电图医师的评估。然而,EEG 分析可以走得更远,实际上可以扩展脑电图师的能力,为他们提供新的工具,使他们能够执行诸如癫痫患者长时间 EEG 的定量分析以及睡眠和精神药理学研究等困难任务。分析方法的选择主要取决于应用的目标,但也必须考虑预算限制。制定适当的策略取决于一些实际情况,例如分析结果是否必须实时在线提供,还是可以离线呈现。在过去,前一种要求会带来相当大的问题,只有采用一种相当简单的分析形式才能解决;新计算机技术的发展提供了更可接受的解决方案。另一种
摘要 在人工智能的发展趋势下,生物识别已成为一种广泛应用的热门技术,在金融、非营利组织、海关等各种场合均有应用,但传统的身份识别工具存在易被泄露、窃取或遭受黑客攻击的风险。脑电图(EEG)是生物识别研究的一种方法,它通过采集头皮特定位置的电磁波来反映个体的脑部活动,大量研究证明脑电图中的α波段可以区分个体差异,其重要性在临床神经生理中也得到了证实。在脑电生物识别中,大多数研究使用复杂的电极通道来覆盖整个头部来收集脑电波记录,但这样的设备无法满足生物识别应用对可采集性的要求。
摘要这项研究的主要目的是通过开发包括脑部计算机界面(BCI)和客户端Vidinexus的互动屏幕在内的原型来探索以改善博物馆访问者的体验和参与的选项。这是通过遵循重点关注研究的三个不同方面的方法来完成的;博物馆和艺术,BCI和原型。前两个方面是背景文献研究的重点。这些发现用于指导原型开发的创作过程。系统的原型,包括交互式测验,它根据由EEG设备测量的选择和参与水平与访问者相匹配。该原型是在研究的构想,规范和实现阶段创建的;并在评估阶段进行了测试。
我们还建议您填写自闭症友好问卷,以准备就诊。如果您在填写 MyChart 中的表格时遇到困难,那么您可以从我们的网站下载纸质副本,并在预约时随身携带。详情请查看二维码。
摘要 — 随着神经工程技术的快速发展,社会对数字心理健康的需求也迅速上升。虽然社会需要利用基于可靠神经科学证据的尖端技术,但准确性和易用性的权衡严重分裂了学术界和工业界。在这里,我们提供模拟和经验证据来揭示头皮上脑电图电极的位置和数量如何影响捕获头皮范围独立成分 (IC) 的准确性。基于从 64 通道脑电图电极获得的 IC 的逆权重头皮地形,对现有的七个脑电图耳机的数量和位置进行了空间相似性分析。结果显示,随着通道数量和位置的增加,相似性呈现出独特的 S 形恶化。我们提供了一个有用的计算模型,用于量化特定耳机的假设质量。我们的量化方法为学术可靠性和社会需求之间的竞争提供了和解,这是 BCI(脑机接口)应用中的一个基本方面。
摘要 脑机接口 (BCI) 是一种将大脑活动转化为操作技术命令的系统。脑电图 (EEG) BCI 的常见设计依赖于 P300 事件相关电位 (ERP) 的分类,这是一种由常见非目标刺激中罕见的目标刺激引起的反应。现有的 ERP 分类器很少直接探索神经活动的潜在机制。为此,我们对 P300 ERP-BCI 设计下的多通道真实 EEG 信号的概率分布进行了新颖的贝叶斯分析。我们的目标是识别神经活动的相关时空差异,这为 P300ERP 反应提供了统计证据,并有助于设计高效、准确的个性化 BCI。作为我们对单个参与者分析的一项重要发现,视觉皮层周围通道的目标 ERP 在刺激后约 200 毫秒达到负峰值的后验概率为 90%。我们的分析确定了 BCI 拼写器的五个重要通道(PO7、PO8、Oz、P4、Cz),从而实现了 100% 的预测准确率。从对其他九名参与者的分析中,我们一致地选择了确定的五个通道,并且选择频率对带通滤波器和内核超参数的微小变化具有稳健性。本文的补充材料可在线获取。
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。
1。Alexandre Gramfort,Martin Luessi,Eric Larson,Deni A. Engemann,Strohmeier Daniel,Christian Brodbeck,Roman Goj,Mainak Jas,Brooks,Lauri和Matti S.任何Python的Mne-Python。神经科学的前线,7(267):1-13,2013。2。Cabanero-Gome,L.,Hervas,R.,Constance,I。和Rodrig-Benite,L。(2021)。eglib:用于EEG提取的Python模块。3。 Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。 (2018)。 skikit-optimize:v0。 5.2。 版本V0,5 4。 Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。3。Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。(2018)。skikit-optimize:v0。5.2。版本V0,5 4。Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Joel,D。,Berman,Z(2015)。人脑。112(50),15468-15473。5。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y.(2017)。LightGBM:高速公路激动人心的梯度。神经信息系统的进步,30,3146–3154 6。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。超越二元类别的性别:对不同差异,心理病理学和基因型的检查。Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Sychiatry Academy,58(8),787-798。7。TOOLE,JM和BOYLAN,G。B.(2017)。neral:新生儿脑电图的定量特征使用matlab。ARXIV预印型ARXIV:1704.05694。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。 在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。 Neuroimage,55(4),1548-1565。 8。 Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。Neuroimage,55(4),1548-1565。8。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。功能连通性预测性别:静止大脑连通性中性别差异的证据。人类脑图,39(4),1765-1776。
I.近年来,生物识别技术在日常生活中越来越多地使用。例如,在使用图形和面对图像登录智能手机中。但是,这种生物特征数据始终涉及身体表面。因此,可以使用数字设备(例如摄像机)轻松地被盗(捕获)。If the data are stolen, copies can be made.此外,填充和脸部识别假定仅一次性身份验证,这会导致SPOOFG的风险。使用其生物识别技术对系统的常规用户进行身份验证,即使用户被没有使用该系统许可的冒名顶替者替换,也无法根据一次性的身份验证使用生物识别方法检测SPOOFEF。为了解决这个问题,已经提出了连续的身份验证,因为它比一次性的身份验证更有效。作为适合连续身份验证的生物识别技术,脑波或脑电图(EEG)引起了人们的注意[1]。只要人还活着,信号总是会产生,因此可以连续测量此信息。此外,由于任何人都可以利用脑波,它们是最容易获得的生物识别数据。由于仅在人戴上脑波传感器时才能检测到脑波,因此其他人也无法秘密地窃取数据。但是,传统研究并未提及使用脑电波作为生物识别技术的应用。使用脑波需要用户佩戴脑波传感器,但是这需要时间,因为用户在移动头发的同时将许多电极设置在头皮上。例如,当用户输入房间,登录PC或使用ATM时,这是无法想象的。因此,作为生物识别技术的脑波不适用于一次性身份验证。另一方面,一旦用户佩戴
