这项研究的目的是探索技术检测思维徘徊的潜力,尤其是在基于视频的远程学习期间,这是改善学习成果的最终好处。为了克服先前思维徘徊在生态有效性,样本平衡和数据集大小方面的挑战,本研究利用了实用的脑电图(EEG)记录硬件,并设计了一个范式,该范式包括在重点学习条件下观看短期视频讲道和未来的计划条件和未来的计划条件。参与者在每个视频结束时估计其注意状态的统计数据,我们将这种评级量表反馈与视频观看过程中的自我捕获的密钥响应相结合,以获取用于分类培训的二进制标签。使用8通道系统记录 EEG,并采用了由Riemannian几何形状处理的空间协方差特征。 结果表明,使用来自三角洲,theta,theta,alpha和beta频段的riemannian加工的协方差特征,可以检测出在接收特征(AUC)下的平均区域(a),用于0.876 for 0.876 for 306分类。 此外,我们的结果表明,训练数据的持续时间很短,可以训练分类器进行在线解码,因为当使用70%的训练集(约9分钟)时,跨讲座的平均AUC为0.689。EEG,并采用了由Riemannian几何形状处理的空间协方差特征。结果表明,使用来自三角洲,theta,theta,alpha和beta频段的riemannian加工的协方差特征,可以检测出在接收特征(AUC)下的平均区域(a),用于0.876 for 0.876 for 306分类。此外,我们的结果表明,训练数据的持续时间很短,可以训练分类器进行在线解码,因为当使用70%的训练集(约9分钟)时,跨讲座的平均AUC为0.689。该发现突出了实用脑电图硬件在以高精度徘徊的情况下实用的潜力,这在基于视频的距离学习过程中具有潜在的应用来改善学习成果。
主要关键词