题名 主要研究内容 神经系统记录与调控的新概念和早期研究 处于早期开发阶段的独特和创新型记录和 ( 或 ) 调控技术,包括处于概念化 初始阶段的新的和未经测试的想法。适用于多种记录方式,包括声学、 化学、电学、磁学和光学,以及遗传工具的使用等 在人脑中使用侵入性神经记录和刺激技术的探索 组建跨学科团队,开发侵入性神经记录与刺激技术,验证新技术原理、可 性研究 行性,并进行早期开发工作 优化用于神经系统记录和调控的仪器和设备技术 通过与最终用户的迭代测试来优化现有或新兴技术的应用程序。这些技术 和方法有望解决与细胞 ( 即神经元和非神经元 ) 和网络的记录与调控相关 的重大挑战,实现对中枢神经系统动态信号的变革性理解 神经系统记录和调控的新技术和新方法 开发极具创造性的方法,以解决在细胞分辨率或接近细胞分辨率水平记录 和调控 CNS 活动相关的重大挑战。可以是各类技术,如光学、磁学、 声学和 ( 或 ) 基因操作等 大脑行为量化与同步 支持能精确量化人类行为并将其与同时记录的大脑活动联系起来的下一代 平台和分析方法的开发和验证。用于分析行为的工具应该是多模态的, 并且应该能够与大脑活动相关联,因而能够准确、特异性、灵活地测量 和调控行为相关的大脑环路活动 在人脑中使用侵入性神经记录和刺激技术 使用先进、创新技术研究行为相关的动态神经环路功能的跨学科研究,旨 在通过系统地控制刺激和 ( 或 ) 行为,同时主动记录和 ( 或 ) 操纵神经活动 的相关动态模式,并通过测量由此产生的行为和 ( 或 ) 感知来了解中枢神 经系统相关环路的动态与功能 推进下一代人类中枢神经系统记录与调控侵入性 支持新型侵入式脑机接口治疗中枢神经系统疾病的临床试验,鼓励研究人 设备的临床研究 员开展转化活动和小型临床研究 人类中枢神经系统中新型记录和调控技术的临床 支持用于人类使用的下一代记录和 ( 或 ) 调控设备的开发,从概念验证到临 前概念验证 床前测试,以进一步了解人类中枢神经系统并治疗神经系统疾病 通过 Blueprint MedTech 将开创性技术从早期开发 鼓励转化新型神经技术,由美国 BRAIN 计划提供资助并由 NIH “蓝图医疗 转化为早期临床研究 科技”计划监督。鼓励学术和小企业合作开展非临床验证研究,鼓励支 持开发和转化开创性神经技术
摘要帕金森氏病(PD)是一种多因素神经退行性疾病。通过减少多巴胺能神经元和srsinuclein在黑色物质和伸展身体中的积累而追求的病理,也可以看到其在胃肠道中的沉积,该证据表达了PD中的微生物 - 脑轴的参与。这项研究的目的是讨论PD中肠道轴轴已经证明的相关性,尤其是考虑到肠道微生物群的研究/参与以及可能的管理,以肉眼的重点是微生物群。这项研究是通过基于数据收集的文献研究的综合书目审查进行的,PubMed Medical Publications,使用作为搜索过滤器:自由文本,临床试验,元分析,过去5年的随机对照测试和修订;以及以下描述:帕金森氏病;微生物群;脑肠道轴;人类。但是,根据包含和排除标准,发现了92篇文章,只有31项研究组成了样本。我们可以通过三条主要道路,化学信号,免疫系统的信号和神经信号传导分析肠道的相互作用。因此,已经出现了疗法的新可能性,重点是微生物组和肠道操纵。最后,需要更多的人类研究,我们可以观察到长期菌群变化的影响。对于剂量,持续时间和使用的疗法组合至关重要。关键词:神经退行性疾病,帕金森氏病,肠轴,微生物组。
[1] 陈善广 , 陈金盾 , 姜国华 , 等 .我国载人航天成就与空间 站建设 .航天医学与医学工程 , 2012, 25: 391-6 [2] 唐琳 .中国空间站完成在轨建造并取得一系列重大进 展 .科学新闻 , 2023, 25: 11 [3] 肖毅 , 陈晓萍 , 许潇丹 , 等 .空间脑科学研究的回顾与展 望 .中国科学 : 生命科学 , 2024, 54: 325-37 [4] 王跃 , 陈善广 , 吴斌 , 等 .长期空间飞行任务中航天员出 现的心理问题 .心理技术与应用 , 2013, 1: 40-5 [5] 陈善广 , 王春慧 , 陈晓萍 , 等 .长期空间飞行中人的作业 能力变化特性研究 .航天医学与医学工程 , 2015, 28: 1-10 [6] 凌树宽 , 李玉恒 , 钟国徽 , 等 .机体对重力的感应及机制 .生命科学 , 2015, 27: 316-21 [7] 范媛媛 , 厉建伟 , 邢文娟 , 等 .航天脑科学研究进展 .生 命科学 , 2022, 34: 719-31 [8] 梁小弟 , 刘志臻 , 陈现云 , 等 .生命中不能承受之轻 —— 微重力条件下生物昼夜节律的变化研究 .生命科学 , 2015, 27: 1433-40 [9] 邓子宣 , Papukashvili D, Rcheulishvili N, 等 .失重 / 模拟 失重对中枢神经系统影响的研究进展 .航天医学与医 学工程 , 2019, 32: 89-94 [10] Tays GD, Hupfeld KE, McGregor HR, et al.The effects of long duration spaceflight on sensorimotor control and cognition.Front Neural Circuits, 2021, 15: 723504-18 [11] Mhatre SD, Iyer J, Puukila S, et al.Neuro-consequences of the spaceflight environment.Neurosci Biobehav Rev, 2022, 132: 908-35 [12] 陈善广 , 邓一兵 , 李莹辉 .航天医学工程学主要研究进 展与未来展望 .航天医学与医学工程 , 2018, 31: 79-89 [13] Moyer EL, Dumars PM, Sun GS, et al.Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days).NPJ Microgravity, 2016, 2: 16002-9 [14] Mains R, Reynolds S, Associates M, et al.A researcher's guide to: rodent research [M].Rat maintenance in the research animal holding facility during the flight of space lab 3.Washington D.C.: National Aeronautics and Space Administration, 2015 [15] Fast T, Grindeland R, Kraft L, et al.Physiologist, 1985, 28: S187-8 [16] Ronca AE, Moyer EL, Talyansky Y, et al.Behavior of mice aboard the international space station.Sci Rep, 2019, 9: 4717 [17] Morey-Holton ER, Hill EL, Souza KA.Animals and spaceflight: from survival to understanding.J Musculoskelet Neuronal Interact, 2007, 7: 17-25 [18] 陈天 , 胡秦 , 石哲 , 等 .美国太空动物实验研究发展历程 .中国实验动物学报 , 2022, 30: 582-8 [19] 董李晋川 , 黄红 , 刘斌 , 等 .苏俄太空动物实验研究发展 历程 .中国实验动物学报 , 2022, 30: 557-67 [20] Beheshti A, Shirazi-Fard Y, Choi S, et al.Exploring the effects of spaceflight on mouse physiology using the open access NASA GeneLab platform.J Vis Exp, 2019, 143: e58447- 58 [21] 姜宁 , 刘斌 , 张亦文 , 等 .欧日太空动物实验研究概况 .中国实验动物学报 , 2022, 30: 568-73 [22] Mao XW, Byrum S, Nishiyama NC, et al.Impact of
国科学技术出版社 , 2019 [2] Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis using event-related brain potentials. Electroencephalogr Clin Neurophysiol, 1988, 70: 510-23 [3] Neuper C, Pfurtscheller G. 134 ERD/ERS based brain computer interface (BCI): effects of motor imagery on senseimotor rhythms. Int J Psychophysiol, 1998, 1: 53-4 [4] McMillan GR, Calhoun G, Middendorf MS, et al. Direct brain interface utilize self-regulation of stable-state visual evoked response (SSVER)[C]. Vancouver: Proc RESNA Ann Conf, 1995 [5] Collinger JL, Wodlinger B, Downey JE, et al. Direct brain interface utilize self-regulation of stable-state visual evoked response (SSVER)[C]. Vancouver: Proc RESNA Ann Conf, 1995 [6] Collinger JL, Wodlinger B, Downey JE, et al.四肢瘫痪患者的高性能神经假体控制。柳叶刀,2013,381:557-64 [6] Ramos-Murguialday A、Broetz D、Rea M 等人。脑机接口在慢性中风康复中的应用:一项对照研究。Ann Neurol,2013,74:100-8 [7] Minev IR、Musienko P、Hirsch A 等人。生物材料。用于长期多模态神经接口的电子硬脑膜。科学,2015,347:159-63 [8] Musk E、Neuralink。一个拥有数千个通道的集成脑机接口平台。J Med Internet Res,2019,21:e16194 [9] Flesher SN、Downey JE、Weiss JM 等人。唤起触觉的脑机接口可改善机械臂控制。Science,2021,372:831-6 [10] Liu D,Xu X,Li D 等。利用局部视觉运动反应进行颅内脑机接口拼写。Neuroimage,2022,258:119363 [11] Willett FR、Avansino DT、Hochberg LR 等。通过手写实现高性能脑机文本通信。Nature,2021,593:249-54 [12] BRAIN 2025:科学愿景[EB/OL]。[2023-12-08]。http://www.braininitiative.nih.gov/pdf/BRAIN2025_508C.pdf [13] 澳大利亚大脑联盟[EB/OL]。[2023-12-06]。 https://ans.org.au/resources/issues/about-the-australian- brain-alliance [14] 解码和控制大脑信息[EB/OL]。[2023-12-06]。https://www.jst.go.jp/presto/bmi/research_ area_E.html [15] IKEGAYA 脑-AI 混合[EB/OL]。[2023-12-06]。https://www.jst.go.jp/erato/en/research_area/ongoing/jpmjer1801.html [16] Jeong SJ, Lee IY, Jun BO, et al. Korea Brain Initiative: emerging issues and Institutionalization of neuroethics.神经元, 2019, 101: 390-3 [17]科技部关于发布科技创新2030——“脑科学与类脑研究”重大项目2021年度项目申报指南的通知[EB/OL]. (2021-09-16)[2023-04-26]。 https://service.most.gov.cn/kjjh_tztg_all/20210916/4583.html [18]北京市人民政府办公厅关于印发《北京市促进未来产业创新发展实施方案》的通知[EB/OL]。 (2023-09-08)。 [2023-12-08]。 https://www.beijing.gov.cn/zhengce/ zhengcefagui/202309/t20230908_3255227.html [19] Brückerhoff-Plückelmann F,Bente I,Becker M,等。
通过胃肠道中的微生物与肠道轴沿肠道轴的大脑之间的通信来操纵大脑功能的能力已成为改善认知和情感健康的潜在选择。饮食组成和模式表明,可以调节微甲状腺轴轴的强大能力。具有具有前,亲,后和合成特性的潜力,饮食纤维和发酵食品作为肠道菌群的有效形状以及随后向大脑的信号传递而脱颖而出。尽管有潜力,但很少有研究直接研究了可能解释饮食纤维和发酵食品对微生物群轴轴的有益作用的机制,从而限制了脑功能障碍的见解和治疗方法。在此,我们评估了全食物源对认知和情感功能的饮食纤维和发酵食品的差异影响。描述了通过微生物群脑轴对饮食纤维和发酵食品对大脑健康的潜在介导作用。尽管需要进行心理评估和生物学样本以比较每种食物类型的更多多模式研究,但迄今为止积累的证据表明,饮食纤维,发酵食品和/或它们在心理饮食中的组合可能是一种成本效益,可以是一种成本效益,方便的方法,可改善整个Lifespan的认知和情感功能。
•跨学科研究网络:确定理解和创造协作机会被确定为形成清晰的知识交换研究专业知识,现有资源(工具,技术,数据)和技能的知识交换途径,以及改善吉巴领域多样化学科和领域的标准和可重复性,理解的动作范围跨度•跨性别机构和识别机构的机制以及他们的健康机构和良好的机构:良好的机构和良好的机构,以及他们的生物既有良好的范围,以及他们的生物既有良好的范围,以及他们的生物既定范围。专注于建立对正常过程的理解(与特定疾病途径相反),它们的稳定性或它们随时间变化的变化被突出显示为特别重要•更好地利用现有资源:将提供更快的途径来识别最有前途的途径,相互作用和潜在的目标,以进行机械性研究或验证,并鼓励整合性的方法,例如,型号,例如,人群和型号,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具。值得注意的是,网络可以促进可用材料和资源的知名度,获取和共享•实验模型:包括动物模型,体外系统,例如类器官,实验室,A-A-Chip和微流体和微流体,以及在Silico模型中: - 确定最合适的动物模型使用或开发最合适的动物模型,在不同的环境和翻译能力中的模型可变性。但是,有机会增加模型的遗传多样性,重新利用和优化
主题:至少30人。男人和女人对情绪的反应不同,分开情感识别或将性别比设置为1:1。刺激:使用标准刺激集。,例如IAP(国际情感图片系统),Gaped(日内瓦情感图片数据库),IAD(国际情感数字声音)等。情感:悲伤,幸福,愤怒,恐惧,喜悦,惊喜,厌恶,中立等。
21世纪被称为“脑研究世纪”,随着脑科学和认知科学的发展,人脑与计算机之间的界限逐渐被打破,出现了一种新型的智能设备——脑机接口。这是一种基于大脑神经活动的新型通信方式,可以实现人脑与计算机之间的直接通信。本文综述了脑机接口的发展历程、目前的技术研究进展以及未来的发展预测。