抗病毒 DNA 胞嘧啶脱氨酶 APOBEC3A 和 APOBEC3B 是癌症突变的主要来源,它们催化胞嘧啶脱氨为尿嘧啶。APOBEC3A 优先靶向单链 DNA,对采用茎环二级结构的 DNA 区域具有明显的亲和力。然而,APOBEC3A 和 APOBEC3B 的详细底物偏好尚未完全确定,DNA 序列对 APO-BEC3A 和 APOBEC3B 脱氨酶活性的具体影响仍有待研究。在这里,我们发现 APOBEC3B 也选择性地靶向 DNA 茎环结构,它们与 APOBEC3A 脱氨的结构不同。我们开发了 Oligo-seq,这是一种基于体外测序的方法,用于识别促进 APOBEC3A 和 APOBEC3B 活性的特定序列环境。通过这种方法,我们证明了 APOBEC3A 和 APOBEC3B 脱氨酶活性受到目标胞嘧啶周围特定序列的强烈调控。此外,我们还确定了 APOBEC3B 和 APOBEC3A 的结构特征,这些特征决定了它们的底物偏好。重要的是,我们确定了肿瘤基因组内发夹形成序列中 APOBEC3B 诱导的突变与 APOBEC3A 突变的 DNA 茎环序列不同。总之,我们的研究提供了证据,表明 APOBEC3A 和 APOBEC3B 可以在癌症基因组中产生不同的突变景观,这是由它们独特的底物选择性驱动的。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
衰老是由于损害正常生化过程的分子损伤的积累而导致的。我们先前报道了对氨基酸序列NGR(ASN-GLY-ARG)的年龄相关损伤导致“功能获得”构象转换为ISODGR(ISOASP-GLY-ARG)。这种整联蛋白结合基序可激活白细胞并促进慢性炎症,慢性炎症是年龄相关的心血管疾病的特征性。现在,我们报告说,抗ISODGR免疫疗法可减少PCMT 1 /小鼠的寿命降低。我们观察到来自PCMT 1 /和自然老化的WT动物的多个组织中ISODGR和炎症细胞因子表达的广泛积累,也可以通过注射ISODGR修饰的等离子体蛋白或合成肽来诱导它们。然而,每周注射抗静脉mAb(1 mg/kg)足以显着降低人体组织中的Isodgr-蛋白质水平,降低血浆血浆中促炎细胞因子浓度,改善认知/协同的抑制量,并延伸
从历史上看,MPOX被认为是一种流行的人畜共患病,通过与西部和中非的储层啮齿动物宿主接触来传播。然而,在2022年5月,发现了人类的MPOX病例在国际上传播,这些案例在拥有已知流行水库的国家以外。在测序2022年的第一批病例时,它们与先前采样的最接近的MPOX病毒(MPXV)共享了42个核苷酸差异。几乎所有这些突变都是Apobec3脱氨酶的作用的特征,即具有抗病毒功能的宿主酶。假设APOBEC3编辑是人类MPXV感染的特征,我们开发了一种双过程系统发育分子时钟,该时钟每年推断出〜6个APOBEC3突变的速率 - 估计MPXV自2016年以来一直在人类中循环。这些持续MPXV传播的观察结果表明了MPXV流行病学的感知范式作为人畜共患病的基本转变,并强调了需要修改MPXV周围的公共健康消息以及爆发管理和控制的必要性。s
毒素 - 抗毒素(TA)系统是细菌用来调节噬菌体防御等细菌过程的普遍存在的两基因基因座。在这里,我们演示了一种新型III型TA系统AVCID的机制,并激活了对噬菌体感染的抵抗力。系统的毒素(AVCD)是一种脱氧胞苷脱氨酶,将脱氧胞苷(DC)转化为脱氧尿苷(DU),而RNA抗毒素(AVCI)抑制AVCD活性。我们已经表明,AVCD在噬菌体感染时脱氨基核苷酸脱氨基核苷酸,但是激活AVCD的分子机械词是未知的。在这里我们表明,AVCD的激活是由噬菌体诱导的宿主转录抑制,导致不稳定AVCI的降解。AVCD激活和核苷酸耗竭不仅减少噬菌体复制,而且还增加了缺陷的噬菌体形成。令人惊讶的是,AVCID不抑制的T7等噬菌体的感染也导致AVCI RNA抗毒素降解和AVCD激活,这表明AVCI的耗竭不足以赋予对某些噬菌体的保护。相反,我们的结果支持像T5这样较长复制周期的噬菌体对AVCID介导的保护敏感,而像T7这样的复制周期较短的噬菌体具有抗性。
心血管疾病(CVD)是一类对全球健康有重大影响并是导致死亡的主要原因的疾病。核糖核酸(RNA)中大量的化学碱基修饰与心血管疾病相关。细胞中存在着各种各样的核糖核酸修饰,其中腺苷脱氨酶依赖性修饰是最常见的核糖核酸修饰之一。作用于核糖核酸的腺苷脱氨酶1(Adenosine deaminase acting on RNA 1)是一种广泛表达的双链核糖核酸腺苷脱氨酶,它通过催化腺苷在目标核糖核酸的特定位点脱氨形成肌苷(A-to-I)。本综述对腺苷脱氨酶RNA-1的结构进行了全面的概述,并总结了ADAR1介导的核糖核酸编辑在心血管疾病中的调控机制,表明腺苷脱氨酶RNA-1是心血管疾病的一个有希望的治疗靶点。
体外表征 ADAR 异构体的 RNA 编辑特异性和体外表征 ADAR 异构体的 RNA 编辑特异性和脱氨酶结构域
了解SARS-CoV-2猖獗突变的分子机制将有助于我们控制COVID-19大流行。APOBEC介导的C-to-U脱氨是SARS-CoV-2基因组中的主要突变类型。然而,尚不清楚C-to-U的新型突变率u是否高于其他突变类型,以及详细的驱动力是什么。通过分析SARS-CoV-2全球人口数据的时间过程,我们发现C-to-U在所有突变类型中具有最高的新型突变率u,并且该u仍在随时间增加(du / dt> 0)。与其他突变类型相比,新型C-to-U事件对特定的基因组区域具有偏好。局部性较差的RNA结构与较高的新型C-to-U突变率相关。级联模型很好地解释了C-to-U脱氨的du / dt> 0。在SARS-CoV-2中,RNA结构是C到U脱氨速率极高且持续加速的分子基础。该机制是SARS-CoV-2突变、适应和进化的驱动力。我们的发现有助于我们理解病毒突变率的动态演变。
1. 英国伦敦癌症研究所癌症药物研发中心 7 2. 上海生物制品研究所,上海,中国 8 3. 广东工业大学生物医学与制药科学研究所,广州,中国 9 4. 中国农业科学院深圳农业基因组研究所,深圳,中国 10 5. 广州医科大学 GMU-GIBH 联合生命科学学院,广州,中国 11
摘要 当细菌细胞接触时,通常会通过毒素传递介导拮抗作用。此类接触对受体细胞产生长期有益影响的可能性尚未得到研究。在这里,我们研究了 DddA 中毒的影响,DddA 是一种胞嘧啶脱氨酶,通过伯克霍尔德菌的 VI 型分泌系统 (T6SS) 传递。尽管 DddA 具有杀灭潜力,但我们观察到几种细菌对 DddA 有抵抗力,反而会积累突变。这些突变可导致获得抗生素耐药性,这表明即使在没有杀灭的情况下,细菌间拮抗作用也会对目标群体产生深远影响。对脱氨酶超家族中其他毒素的研究表明,诱变活性是这些蛋白质的共同特征,包括我们展示的代表性毒素,它以单链 DNA 为目标,并显示出明显不同的结构。我们的研究结果表明,细菌间拮抗相互作用的一个令人惊讶的结果可能是通过直接诱变毒素的作用促进适应。
