摘要:BK 多瘤病毒 (BKPyV) 衣壳突变在肾移植 (KTx) 接受者体内积累,病毒持续复制。这些突变与中和逃逸有关,似乎是由于宿主细胞 APOBEC3A/B 酶使胞嘧啶脱氨而产生的。为了研究患者体内发生的致突变过程,我们扩增了 VP1 基因的分型区,对扩增子进行了 5000-10,000 × 深度测序,并确定了罕见突变,这些突变与 COSMIC 突变特征相吻合。在携带 BKPyV 基因组的质粒的扩增子中确定了背景突变,并与来自法国和越南的 23 名 KTx 接受者的 148 个样本中观察到的突变进行了比较。在尿液、血清和肾脏活检样本中持续观察到三种突变特征,其中两种,SBS2 和 SBS13,与 APOBEC3A/B 活性相对应。此外,在患者样本和体外感染 BKPyV 的细胞中均检测到了第三个病因不明的特征 SBS89。定量上,尿液样本中的 APOBEC3A/B 突变率与尿液病毒载量密切相关,并且似乎因人而异。这些结果证实,APOBEC3A/B 是患者 BKPyV 基因组突变的主要来源,但并非唯一来源。
A3A 靶向转移治疗 A POBEC 3A (A3A) 是人类最重要的脱氨酶之一,可使单链 DNA (ssDNA) 发生超突变。超突变与多种肿瘤-癌症转移进展有关 1-4 5-7 。已报道 APOBEC 依赖性癌症类型,如肺癌 8、9-11 、前列腺癌 12 、尿路上皮癌 13 、膀胱肿瘤 14 、卵巢鳞状癌 15、16 、乳腺癌 17 、子宫内膜异位症/宫颈癌 18、19 和头部 20 ,超突变酶也与某些自身免疫有关 21 。为了使 ssDNA 超突变,A3 酶诱导脱氧胞嘧啶随机脱氨为脱氧尿嘧啶 (dC-to-dU),这已通过人工模拟得到证实 22 。人类 A3A 抑制已被提议作为一种干扰转移产生的可能治疗方法 23 。然而,A3A 抑制受到其他七种结构相关的人类 A3 酶 (A、B、C 24 、D、F、G 25 、H 和 AID 26 ) 存在的限制,这些酶具有生理/防御功能和可控诱变,例如抗体多样化 27 28 、肠细胞更新 29 30 、衰老 31 或抗病毒活性 32、33 34 。经晶体学和低温电子显微镜测定,大多数人类 A3 酶表现出具有相似 3D 结构的不对称同型二聚体(异型二聚体)结构(A 35 、B 36 、C 24 、F 37 、G 25 、H 38 、AID 26 ,表 S2 和图形摘要)。每个 A3 单体包含 ssDNA 结合所需的结构域和锌依赖性 dC 到 dU 脱氨的独立结构域。由于 A3A ssDNA 结合和二聚体界面的可能抑制剂探索很少 25 ,因此本文使用共同进化对接通过计算探索了这些可能的靶点。最终目标是探索任何与肿瘤转移有关的超突变的计算机干扰。这里采用了基于 Java 的 Data Warrior B uild E volutionary Library (DWBEL) 2-5 协同进化算法,作为筛选超大型类药库 39, 40 或从蛋白质序列 41-43 中预测机器学习对接模型的一种替代方法。具体而言,DWBEL 协同进化标准经过调整,可随机生成数万个原始子代,以选择数百个具有低纳摩尔亲和力的最佳无毒适配子代。类似的协同进化对接预测,当靶向其他蛋白质-配体对时,亲和力会更高。例如,针对耐药葡萄球菌的新型抗生素 44 、针对不动杆菌的 Abaucin 衍生物 45 、非人类抗凝血灭鼠剂 46 、猴痘 Tecovirimat 抗性突变体 47 、内腔 SARS omicron 48 、炎性冠状病毒 ORF8 蛋白 49 、人类 K + 通道的原核模型 50 、VHSV 弹状病毒的内腔 51 、疟疾环子孢子蛋白 47 、RSV 抗性突变体 52 和抗 HIV-Vif A3G 53 。
摘要 长期以来,人们一直认为线粒体基因组 (mtDNA) 中体细胞突变的积累是衰老过程中线粒体和组织功能障碍的可能机制。由于检测低频突变的能力有限,因此无法彻底表征与年龄相关的 mtDNA 体细胞突变。在这里,我们对一群老年小鼠的 8 种组织进行了双重测序,检测到了 >89,000 个独立的体细胞 mtDNA 突变,并显示在衰老过程中,所有受检组织的组织特异性突变均显著增加,这与线粒体含量和组织功能无关。G → A/C → T 替换是所有组织中的主要突变类型,表明复制错误和/或胞苷脱氨,并且随着年龄的增长而增加,而 G → T/C → A 替换是第二常见的突变类型,表明氧化损伤,但无论组织如何,都不会随着年龄的增长而增加。我们还表明,线粒体DNA突变的克隆扩增随年龄增长而变化,这种变化与组织和突变类型有关。出乎意料的是,与氧化损伤相关的突变很少在任何组织中形成克隆,并且在用埃拉米普利肽或烟酰胺单核苷酸治疗的老年小鼠的心脏和肾脏中显著减少。因此,氧化损伤相关突变随年龄增长而缺乏积累表明氧化病变或含有氧化损伤的线粒体DNA基因组的终生动态清除。
自 2015 年发现寨卡病毒 (ZIKV) 与胎儿小头畸形之间存在联系以来,导致数千名婴儿出生时患有神经发育缺陷,无脊椎动物传播的虫媒病毒,包括蚊子传播的黄病毒,一直备受关注。我们最近的研究 (Piontkivska et al. 2017) 表明,RNA 编辑,特别是由作用于 RNA 的腺苷脱氨酶 (ADAR) 基因家族成员催化的腺苷到肌苷脱氨,在 ZIKV 的分子进化中发挥作用,可能是干扰素调节的抗病毒反应的一部分。然而,由于 ADAR 在神经转录组多样化中的双重作用,ADAR 介导的编辑也有可能影响关键宿主神经蛋白的表达和功能 (Piontkivska et al. 2019)。这反过来可能解释与许多虫媒病毒感染(包括西尼罗河病毒 (WNV) 感染)相关的神经系统症状的广度和严重程度。在这里,我们使用公开的完整 WNV 多聚蛋白序列来检查 ADAR 编辑的足迹。我们的结果表明,与 ZIKV 基因组类似,WNV 基因组反映了 ADAR 编辑的特征,这是作用于病毒基因组的进化力量之一,例如,表现为保守位点中 ADAR 抗性位点的比例高于具有核苷酸多态性的位点。这些结果进一步扩展了我们之前关于 ADAR 编辑作为 RNA 病毒的突变和进化力量的发现,并深入了解了病毒神经毒性和神经侵入性黄病毒感染引起的神经退行性背后的潜在机制。
摘要 使用嵌合抗原受体 (CAR) T 细胞靶向 T 细胞恶性肿瘤受到针对 CD3 和 CD7 等共享抗原的“ T v T ”自相残杀的阻碍。碱基编辑通过创建终止密码子或消除剪接位点,提供了无缝中断有问题抗原的基因表达的可能性。我们描述了通过在慢病毒介导的 CD3 或 CD7 特异性 CAR 表达之前有序去除 TCR/CD3 和 CD7 来产生抗自相残杀的 T 细胞。对碱基编辑细胞的分子询问证实了在常规 Cas9 处理的细胞中检测到的染色体易位的消除。有趣的是,3CAR/7CAR 共培养导致“自我富集”,产生了 99.6% TCR − /CD3 − /CD7 − 的群体。 3CAR 或 7CAR 细胞能够对具有明确 CD3 和/或 CD7 表达的白血病细胞系以及原代 T-ALL 细胞发挥特异性细胞毒性。共培养的 3CAR/7CAR 细胞在体外和体内人:鼠嵌合模型中对 CD3 + CD7 + T-ALL 靶标表现出最高的细胞毒性。据报道,APOBEC 编辑器可以表现出 DNA 和 RNA 的向导独立的脱氨作用,但我们没有发现影响 CAR 抗原特异性结合区域的有问题的“脱靶”活性或混杂碱基转换,否则可能会重定向 T 细胞特异性。联合输注抗自相残杀的抗 T CAR T 细胞可能在 T 细胞恶性肿瘤的异基因造血干细胞移植之前增强分子缓解。
编辑质体基因组有助于了解质体基因的分子功能和设计作物所需的性状(Maliga,2022 年)。DddA 衍生的胞嘧啶碱基编辑器 (DdCBE) 能够在线粒体和质体基因组中进行 C 到 T 的编辑(Kang 等人,2021 年;Li 等人,2021 年;Mok 等人,2020 年;Nakazato 等人,2021 年)。最近,Cho 等人(2022 年)开发了 TALE 连接脱氨酶 (TALED),可以催化人类线粒体中的 A 到 G 碱基转化。利用 DddA 毒性的发现(Cho et al ., 2022 ),我们通过探索两种胞苷脱氨酶生成了用于质体编辑的新型单体 TALE 连接的 CBE:具有宽编辑窗口的人类 APOBEC3A 变体(hA3A-Y130F)(Ren et al ., 2021 )和基于 TadA 的改良胞苷脱氨酶(Lam et al ., 2023 ),分别生成 mTCBE 和 mTCBE-T。此外,我们还探索了一种可以同时脱氨胞嘧啶和腺嘌呤的 TadA 衍生脱氨酶(Lam et al ., 2023 ),以设计一种双碱基编辑器,名为 mTCABE-T。这些脱氨酶此前均未在植物或人类的细胞器基因组编辑中进行过研究。我们首先组装了针对三个水稻质体基因的左或右 TALE 阵列,这三个基因编码光系统 II 的核心成分( OsPsbA )、光系统 I ( OsPsaA )和 30S 核糖体亚基 RNA 成分( Os16SrRNA )。构建了三个单体质体碱基编辑器以及 DdCBE 和 Split-TALED 对照,用于在水稻中表达(图 1a )。我们通过靶向扩增子深度测序评估了再生水稻愈伤组织中的碱基编辑效率。令人印象深刻的是,mTCBE 诱导了高效的 C 到 T 转换,在 OsPsbA 、OsPsaA 和 Os16SrRNA 处的平均编辑频率分别为 42.3%、21.6% 和 19.4%(图 1b-d)。 DdCBE 催化 C 到 T 的转化,在这些目标位点的平均编辑效率分别为 7.8%、33.5% 和 34.2%(图 1b-d)。相比之下,mTCBE-T 的效率低于 mTCBE,C 到 T 的编辑效率为
伊朗德黑兰马列卡什塔尔理工大学生物科学与生物技术系 *通讯作者:电子邮件地址:molaeirad@gmail.com (A. Molaei rad) 摘要 微悬臂 (MCL) 是一种经济高效、灵敏度高的生物检测装置。特定分析物在微悬臂表面的吸附会通过改变表面特性导致 MCL 弯曲。这些新型生物探针的设计方式是,微悬臂表面的一侧涂有可吸收特定分子的选择性受体。表面吸收目标后,微悬臂在纳牛顿力的作用下偏转,导致微悬臂弯曲。在以下工作中,我们提出了一种改进的微悬臂,通过将单胺氧化酶 (MAO) 固定为含黄素腺苷二核苷酸 (FAD) 的酶。该酶催化胺基的氧化脱氨,因此具有胺基官能团的化合物与酶之间的相互作用基于用单胺氧化酶修饰的微悬臂进行生物检测。在本研究中,MAO 通过交联剂固定在微悬臂表面的金表面单层上。随后,以犬尿胺溶液为底物。比较结果表明,该酶在固定状态下被激活以氧化胺基,而在甲基苯丙胺作为酶抑制剂存在下被抑制。由于所有过程都在室温下进行,因此基于修饰的微悬臂的生物探针设计对于生物检测具有重要意义。关键词:单胺氧化酶;微悬臂;固定化;生物检测;甲基苯丙胺。引言生物传感器是监测分子与固体表面上固定的生物受体之间分子相互作用的强大装置 [1]。随着微机电系统 (MEMS) 的发展,人们一直对设计低成本分析方法很感兴趣 [2]。其中,微悬臂是最简单的 MEMS,广泛应用于生物检测 [3]。基于微机械悬臂 (MC) 的传感器已被研究用于检测化学和生物物种 [4,5]。用于化学或生物传感的 MC 通常通过在悬臂的一侧涂覆对目标配体具有高亲和力的响应相来修改。由于配体在敏感表面上的结合而引起的表面应力变化被解析以进行检测。悬臂换能器在生物传感器、生物微机电系统 (Bio-MEMS)、蛋白质组学和基因组学中的潜在用途包括
案例介绍:一个16岁的男孩在过去四个月中向小儿急诊室介绍了Polyuria,Polydipsia和体重减轻。他过去的病史并不明显。症状发作是在第一次剂量的抗COVID-19-BNT162B2 comirnaty疫苗后几天,然后在第二剂剂量后恶化。 身体检查是正常的,没有神经系统异常。 辅助参数在正常范围内。 每日流体平衡监测确认的多尿和多次二手。 生物化学实验室分析和尿液培养正常。 血清渗透压为297 MOSM/kg H 2 O(285-305),而尿液渗透压为80 MOSM/kg H 2 O(100-1100),表明糖尿病含量为糖尿病。 保留了前垂体功能。 由于父母拒绝同意水剥夺测试,因此对去氨加压素的治疗进行了治疗,并确认了AVP缺乏症(或中央糖尿病)的尤里万蒂伯斯诊断。 脑MRI揭示了垂体茎增厚(4 mm),并具有对比度增强,并且在T1加权成像上垂直垂体亮点的丧失。 这些迹象与神经肾上腺素型植物学炎是一致的。 免疫球蛋白水平正常。 低剂量的口服去氨加压素足以控制患者的症状,使血清和尿渗透压值正常化以及排出时的每日流体平衡。 2个月后的脑MRI显示稳定的垂体茎增厚,垂体后仍无法检测到。 临床和神经放射学随访仍在进行中。症状发作是在第一次剂量的抗COVID-19-BNT162B2 comirnaty疫苗后几天,然后在第二剂剂量后恶化。身体检查是正常的,没有神经系统异常。辅助参数在正常范围内。每日流体平衡监测确认的多尿和多次二手。生物化学实验室分析和尿液培养正常。血清渗透压为297 MOSM/kg H 2 O(285-305),而尿液渗透压为80 MOSM/kg H 2 O(100-1100),表明糖尿病含量为糖尿病。保留了前垂体功能。由于父母拒绝同意水剥夺测试,因此对去氨加压素的治疗进行了治疗,并确认了AVP缺乏症(或中央糖尿病)的尤里万蒂伯斯诊断。脑MRI揭示了垂体茎增厚(4 mm),并具有对比度增强,并且在T1加权成像上垂直垂体亮点的丧失。这些迹象与神经肾上腺素型植物学炎是一致的。免疫球蛋白水平正常。低剂量的口服去氨加压素足以控制患者的症状,使血清和尿渗透压值正常化以及排出时的每日流体平衡。2个月后的脑MRI显示稳定的垂体茎增厚,垂体后仍无法检测到。临床和神经放射学随访仍在进行中。由于多尿和多次多维亚的持续存在,通过增加剂量和每日施用数量来调整脱氨加压素的治疗。
社会。最重要的是,迄今为止,针对这一系列致残或限制生命的疾病,获得许可的治疗方法极其有限(Chinnery,2015;Viscomi 等人,2023)。线粒体疾病的治疗方法包括对症治疗以改善生活质量或延长寿命,以及基因治疗以减少异质体并治愈细胞生化缺陷。对症治疗包括操纵线粒体的细胞含量、通过雷帕霉素诱导线粒体周转、恢复 NAD + 水平、调节活性氧的产生和氧化应激等(Russell 等人,2020)。基因治疗包括直接编辑线粒体基因组、基因替代疗法(Silva-Pinheiro 等,2020;Ling 等,2021)和线粒体移植疗法(Green field 等,2017)。基因编辑技术作为一种潜在的治疗选择,在过去十年中已在核遗传疾病的治疗中得到广泛研究(Sharma 等,2015;Nelson 等,2016;De Ravin 等,2017;Zheng 等,2022),越来越多的临床试验正在进行中(Arabi 等,2022)。然而,由于缺乏有效的工具来操纵 mtDNA( Silva-Pinheiro 和 Minczuk,2022 年),其在由 mtDNA 突变引起的线粒体疾病中的意义受到阻碍,除非通过锌指融合( Minczuk et al., 2008; Gammage et al., 2014; Gammage et al., 2016a; Gammage et al., 2016b; Gammage et al., 2018b )或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)切割和消除有害的 mtDNA 拷贝。线粒体DNA碱基编辑技术目前已发展成为生物技术中最常用的编辑技术之一(Pereira et al., 2018),以及基于TALE系统的单体酶(Pereira et al., 2018)。近年来,基于TALE的线粒体DNA碱基编辑工具陆续被引入,第一种是DddA衍生的胞嘧啶碱基编辑器(DdCBE)(Mok et al., 2020),它为按预期操纵线粒体DNA打开了大门。DddA系统来源于伯克霍尔德菌,DdCBE由两半无毒的TALE融合分裂DddA(DddA-N和DddA-C)组成,通过将这两半分裂的DddA重新组装成功能性脱氨酶,催化间隔区域内的胞嘧啶脱氨。目前,DdCBE 已成功应用于植物 (Kang et al., 2021)、哺乳动物细胞 (Mok et al., 2020)、斑马鱼 (Guo et al., 2021)、小鼠 (Lee et al., 2021; Lee et al., 2022a; Guo et al., 2022)、大鼠 (Qi et al., 2021) 甚至人类生殖细胞 (Wei et al., 2022a; Chen et al., 2022) 的线粒体 DNA 编辑。在我们的实验室中,它还已成功用于小鼠早期卵泡阶段的有效生殖系线粒体 DNA 编辑(已提交数据)。不幸的是,它在挽救线粒体疾病方面的应用极其罕见,无论是用于治疗研究(Silva-Pinheiro 等人,2022 年)还是用于临床试验(Chen 和 Yu-Wai-Man,2022 )。众所周知,潜在基因编辑结果的可预测性对于基因编辑技术在临床上用于基因治疗至关重要。为此,已经进行了大量的工作来了解CRISPR系统在核基因组编辑中对不同靶标的编辑规则,并且已经证明对于每个被CRISPR/Cas9编辑的原型间隔物来说,其结果是完全可预测的(van Overbeek et al., 2016 ; Shen et al., 2018 ; Shou et al., 2018 ; Allen et al., 2019 ; Chakrabarti et al., 2019 ; Chen et al., 2019 ; Long, 2019 ; Shi et al., 2019 ),这使我们能够提前知道每种策略在临床上应用的潜在结果。然而,对于线粒体基因组,由于缺乏 DNA 修复,CRISPR/Cas9 尚未参与 mtDNA 编辑