机器学习预测分析 (MLPA) 在医疗保健领域的应用越来越广泛,但可能会对患者、临床医生、卫生系统和公众造成危害。这项技术的动态性质为评估安全性和有效性以及将危害降至最低带来了独特的挑战。为此,监管机构提出了一种方法,将更多的责任转移给 MLPA 开发人员,以减轻潜在的危害。为了有效,这种方法要求 MLPA 开发人员承认、接受并承担减轻危害的责任。在对美国 40 名医疗保健应用程序的 MLPA 开发人员的采访中,我们发现一部分 ML 开发人员发表了反映道德脱离的言论,代表了几种不同的潜在理由,这些理由可能会在个人责任和危害之间造成距离。然而,我们还发现了另一部分 ML 开发人员,他们承认自己在制造潜在危害方面的作用、设计决策的道德分量以及减轻危害的责任感。我们还发现了道德冲突的证据,以及作为在公司工作的个人开发人员对避免危害的责任的不确定性。这些发现表明,道德机器学习的发展可能存在促进因素和阻碍因素,这些因素可能通过鼓励道德参与或阻止道德脱离而发挥作用。如果没有对机器学习开发人员就其责任范围及其履行方式进行教育和指导,那么依赖于机器学习开发人员认识、接受和履行减轻危害责任的能力的监管方法可能会取得有限的成功。
气泡在沸腾过程中的成核、生长、聚结和脱离是影响传热和散热性能的重要现象。观察气泡行为是理解沸腾传热机理的重要方法。本研究了单个气泡在 SiO 2 涂层表面从不同直径的孤立人工空腔中成核和脱离的动力学。实验在 FC-72 中进行,饱和压力从 0.75 bar 到 1.75 bar。使用高速摄像机研究了气泡在成核过程中的行为。在完整的气泡生长期内,FC-72 气泡呈球形。在初始生长期后,它与沸腾表面的唯一接触是通过我们所说的狭窄的“蒸汽桥”。接触面积的大小受空腔直径的影响:空腔口越大,气泡脱离直径越大。气泡脱离直径从 20 µm 腔体直径的 0.45 mm 增加到 70 µm 腔体直径的 0.61 mm。此外,更高的饱和压力将产生具有较小脱离直径的气泡:它们从 0.75 bar 的 0.62 mm 减小到 1.75 bar 的 0.47 mm。在腔体直径和饱和压力相似的情况下,气泡脱离直径不会因过热度的不同而发生显著变化。气泡脱离频率随过热度的增加而线性增加。虽然压力对气泡脱离频率有限制作用,但另一方面,较大的腔体直径会导致较低的气泡脱离频率。
简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
OPNAVINST 1750.3B N17 2024 年 1 月 31 日 OPNAV 指令 1750.3B 来自:海军作战部长 主题:对受虐待家属的过渡补偿 参考:(a) DoD 7000.14-R,国防部财务管理条例,第 7B 卷 (b) DoD 2019 年 9 月 23 日指令 1342.24 (c) ASN (M&RA) 备忘录,《对受虐待家属过渡补偿的授权委托》,145 年 4 月 21 日(NOTAL) (d) DoD 2020 年 5 月 28 日指令 6025.23 (e) 10 USC 1. 目的。规定可提供给因受虐家属虐待而退役的海军成员家属的每月受虐家属过渡补偿 (TCAD) 福利的扩大程序,并实施参考 (a) 至 (e) 的要求。本指示是完整修订版,应全部审查。主要更改包括更新标准持续时间和根据受害者年龄而定的时间限制。2. 取消。OPNAVINST 1750.3A。3. 范围和适用性。本指示适用于现役超过 30 天的海军成员,并且:a. 因虐待家属罪被定罪,导致该成员根据军事法庭的判决脱离现役。b. 因虐待家属罪被定罪,导致该成员根据军事法庭的判决丧失所有工资和津贴或依法丧失所有工资和津贴。c。自愿或非自愿地因行政原因脱离现役,脱离的依据包括受抚养人虐待罪。d. 犯有受抚养人虐待罪,但因符合特殊资格要求的另一项罪行而被行政脱离。
结果:我们的分析包括47篇文章,涉及50例与ICI相关的SJS/10患者。该队列的平均年龄为63岁,男性占主导地位(54%)。大多数患者患有黑色素瘤或非小细胞肺癌。sjs/十个通常发生的早期发生,启动后23天发病。治疗主要涉及全身性皮质类固醇和静脉免疫球蛋白。总体死亡率为20%,为32%的10%,感染和肿瘤进展为主要原因。从发病到死亡的中间时间为28天。幸存者经历了30天的上皮时间的中间时间,与表皮脱离的程度正相关(r s = 0.639,p = 0.009)。死者的患者比幸存者相比表现出明显更高的十个(90%,48%,p = 0.029)和更大的表皮脱离面积(90%比30%的身体表面积[BSA],P = 0.005)。与皮质类固醇单一疗法或非皮质类固醇治疗组相比,联合疗法组的比例更高(72%vs. 29%和50%,P = 0.01),而死亡率或重新上述时间没有显着差异。双重ICI治疗的率高于单个治疗率(100%比50%,p = 0.028)。Among single ICI therapies, the sintilimab-treated group trended towards a higher TEN rate (75% vs. 40-50%, p = 0.417), a larger detachment area (90% vs. 30-48% of BSA, p = 0.172), and a longer re-epithelization time (44 vs. 14-28 days, p = 0.036) compared to other ICI groups, while mortality rates remained 相似的。
摘要空气中的微型和纳米尺寸塑料颗粒的环境影响知之甚少。在科罗拉多州河流盆地(UCRB; Colorado Rocky Mountains)的高海拔高度(2,865–3,690 m)上大气沉积颗粒(2,865–3,690 m)上的大气沉积颗粒的显微镜分析(UCRB; Colorado Rocky Mountains)表明,黑人物质的存在与微型纤维密切相关,与微塑性纤维相关,与微塑性纤维相关,解释了与Tile Matter Matter Matter Matter Matter Matter Matter Matter Matter。相同的颗粒和相似的颗粒发生在切碎的轮胎和路面样品中。负责所有轮胎的黑色的物质是碳黑色,这是一种由碳氢化合物燃烧产生的石墨降低轮胎添加剂,它同质地渗透到轮胎聚合物和其他添加剂的混合物中。这样的黑轮胎物质可能会发挥辐射效应,与黑碳的辐射效应非常相似。通过二维气相色谱法测量的许多有机化合物类型的雪中存在表明,大气沉积的黑色路线媒介物质是在UCRB中推动雪融化的光吸收颗粒之一。可以通过乘以车辆距离传播的每次侵蚀的每次距离折磨的数量来估算从车辆中脱离的道路通道颗粒的质量。在测量和假设的结合下,关于大气轮胎搭配颗粒的量和辐射特性,这些颗粒的辐射效应可能会使黑碳的效果增加约10%–30%,这是修订的估计。在区域和全球尺度上,发射和沉积的轮胎搭配物的数量和影响可能因地理来源,运输途径和沉积设置的因素而有所不同。
规格作为基于差异较小的材料的设计。除了折射指数外,材料还必须满足其他要求,其中的材料在波长范围内具有可忽略的损失。但是,在介电材料中,折射率和吸收边缘是连接的。[1]具有高折射率的材料在长波长下具有吸收边缘,而低折射率材料在短波长下具有吸收边缘。tio 2是具有最高折射率的介电材料,在频谱的可见范围(VIS)中,开始在≈400nm处发射。具有更高折射率的处置材料,而在VIS中保持透明,将具有广泛的实际相关性,因为它将允许使用层较低的层且整体厚度降低的干扰设计。如本文所示,纳米胺的沉积速率超过了TIO 2之一。预计厚度降低和高沉积速率都会导致涂料系统的生产率提高和制造成本降低。除了制造纳米酰胺外,一种将折叠指数与散装材料特性脱离的方法是扫视角度沉积,[2,3]中形成了柱状纤维结构,从而减少了有效的折射率。因此,将在散装层和具有相同材料的柱状结构的层面层之间发生干扰效应。[4,5]。在2016年[7]由于没有不同材料之间的接口,这打开了有趣的效果,例如板极化器或更高的激光损伤抗性。如参考文献所述,一种可比较的方法是由有机膜的离子蚀刻形成的自组织结构。再次,通过蚀刻降低了层的有效折射率,该蚀刻引入了局部和未定位的多孔结构。[6]如果将层用作抗反射设计中的最外层,则此效果是有益的。至于瞥见角度沉积,自组织层的缺点是对环境条件的敏感性提高。一个最近克服两个特征之间联系的概念是量化纳米胺(QNL)的,这是Willemsen,Jupé等人首次报道的。
这个问题越来越受到关注,尤其是在运动服,运动服和工作服领域。[1,2]水分管理纺织品是指具有单向运输特性的服装,使水分可以从佩戴者的身体中运输出来。[3,4]人们倾向于在许多条件下大量出汗或发汗,例如,在潮湿而热门的环境中,或者处于强化运动状态。在这种情况下,出汗遵循人体,效率低下的水分传输不仅会影响热生理舒适性,而且会导致不适和可能的皮肤状况。[5,6]因此,必须具有出色的方向性水分运输能力的材料来保持佩戴者的固定瓷砖和表演。[7,8]在这方面,水分芯技术已被用作有前途的方法之一。水分芯的效率取决于几个参数,这些参数是结构性设计,底物的表面作用,孔的微结构和毛细管力(FCF)。[9]正在采用各种技术,包括由表面改性的羟化型超细纤维组成的单个分层纺织品。[10]这种纺织品通常是从聚酯和聚丙烯中脱离的,这些纺纱表现出高水分释放和低水分携带。这款单层微纤维纺织品需要轻微的精加工,以增强其水分传输能力。Janus纺织品是指每侧具有不对称特性的纺织品。[11,12]芯吸技术的另一种应用方法是利用卫星微纤维,Coolmax Fiber旨在改善所得纺织品的水分传输性能。[13]它显示出相当大的水分传输能力,但是,这种单层纺织品无法保留液体并阻止其沿反向方向越过纺织品,也就是说,这是双向液体液体水分传输纺织品。他们吸引了越来越多的注意力,他们对水分管理的潜在收益。由于每一层的独立剪裁和设计,这种纺织品具有更有效的液体水分传输性能。在我们的工作背景下,可以通过两种主要策略来制造具有方向性水分传输能力的Janus材料:1)通过将它们涂在布上[14-18]和2)形成疏水性 - 氢化性
izervay™(avacincaptad pegol玻璃内解决方案)Rx仅简短摘要:此信息并不全面。访问izervayecp.com以获取由FDA批准的产品标签或致电609-474-6755。1的指示和用法Izervay用于治疗继发于年龄相关的黄斑变性(AMD)的地理萎缩(GA)。2剂量和管理2.1一般给药信息Izervay必须由合格的医师管理。2.2建议的剂量izervay的建议剂量为2 mg(0.1 ml 20 mg/ml溶液),每月一次(大约每28±7天)每月向每只受影响的眼睛注射一次,持续12个月。2.4注射程序应仅服用0.1 mL(2 mg)以输送单剂量。应处理任何过量量。在进行玻璃体内注射之前,应使用TONOMETRY监测患者的眼内压(IOP)。如有必要,可以给出眼部降压药物以降低IOP。玻璃体内注射程序必须在受控的无菌条件下进行,其中包括使用手术手部消毒,无菌手套,无菌垂坠和无菌眼睑概念(或等效)。在注射之前应给予足够的麻醉和广谱局部菌心。慢慢注入,直到橡胶阻止器到达注射器的末端,以传递0.1 ml的体积。通过检查橡胶塞的末端是否已达到注射器枪管的末端,conconrm递送了全剂量。 每个小瓶和注射器应仅用于治疗单眼。conconrm递送了全剂量。每个小瓶和注射器应仅用于治疗单眼。玻璃体内注射后,应监测患者的眼内压(IOP)。适当的监视可能包括检查视神经头或隆隆声的灌注。玻璃体内注射后,应指示患者报告任何暗示内咽炎的症状(例如,眼睛疼痛,眼睛的发红,恐惧症,视力模糊)毫不延迟。如果对侧眼需要治疗,则应使用新的小瓶和注射器,并且应在将izervay施用给另一只眼睛之前,并应更换无菌,注射器,手套,窗帘,眼睑窥镜,lter针和注射针。重复与上述相同的过程步骤。应根据当地法规处理任何未使用的药物或废物材料。3剂量和强度玻璃体内溶液:20 mg/ml清晰至略微蛋白味,在单剂量小瓶中无色至略带黄色的溶液。4禁忌症4.1眼部或眼周感染患者的眼部或眼周感染Izervay是禁忌的。4.2主动性眼内肿块患者禁忌主动眼内肿瘤。5警告和预防措施5.1内咽和视网膜脱离玻璃体内注射可能与内咽和视网膜脱离有关。在管理Izervay时,必须始终使用适当的无菌注射技术,以最大程度地减少内po的风险。应监测接受Izervay的患者的新血管AMD迹象。应指示患者报告任何暗示内嗜性或视网膜脱离的症状,以允许及时和适当的管理。5.2新生血管AMD在临床试验中,Izervay的使用与新血管(湿)AMD或脉络膜新生血管形成率提高(每月给药时为7%,在假手术组中给予4%)。5.3在玻璃体内注射(包括Izervay)后,已经观察到眼内压(IOP)的眼内压瞬变增加(IOP)。注射后应监测视神经头的灌注并根据需要进行管理。6不良反应在标签中其他地方描述了以下潜在的严重不良反应:•眼部和眼部感染•神经AMD•新血管AMD•主动内部内部侵蚀•眼压增加•眼压增加•内咽中炎和视网膜脱离的经验6.1临床试验在经过临床反应的情况下进行临床反应,因为在临床上进行了临床反应,因为临床反应率是在临床上进行的,因为临床的临床反应率是在临床上进行的,因为临床的临床反应率是在不适当的情况下进行的。在另一种药物的临床试验中率,并且可能不会重新估算实际观察到的速率。在两项虚假对照研究(GATHER1和GATHIC2)中,在733例AMD患者中评估了Avacincaptad Pegol的安全性。
在大会之后,航空业从巴黎到金边举行的会议以及两者之间的所有要点,“可持续能力”的主题在议程上很高。该行业希望到2050年,碳排放量为零,并且有巨大的梦想来驾驶电飞机或氢动力飞机。,但在诸如Goodfellas和Donnie Brasco之类的伟大电影中,“ Fuhgeddaboudit”。对于那些不熟悉布鲁克林,纽约或霍博肯,新泽西州,fuhgeddaboudit等地点的语言的人来说,这是指“用来表示建议的场景不太可能是不太可能的”术语。氢,fuhgeddaboudit。除短啤酒花上飞行的EVTOL以外的任何其他东西,Fuhgeddaboudit。到2050年净零,fuhgeddaboudit。为什么?正如我之前所说的,这取决于金钱。很简单。当前,氢根本太昂贵了,这个项目无法支持它。首先开发带有氢能动力的发动机的飞机实际上将花费数十亿美元,而数十亿美元以开发和实施支持基于氢的航空生态系统所需的机场基础设施。这不会在我的一生中发生。,但不要相信我的话。空中客车公司在几年前大声宣布它将在2035年开发氢驱动的飞机,但现在已经兑现了这一诺言,并且非常安静地表示,它在2035年的日期推迟了,并且没有迹象表明它何时可能与氢一起飞行。一位空中客车官员告诉我:“我们致力于将一架商业可行的氢驱动飞机推向市场。这一承诺符合我们领导航空脱离的野心,并支持该行业的长期可持续性目标,这保持了不变。氢有可能成为航空的变革能源。但是,我们认识到,开发一个氢生态系统(包括基础设施,生产,分销和监管框架)是需要全球协作和投资的巨大挑战。“最近的事态发展表明,关键推动因素的进展,尤其是根据可再生能源在大规模上产生的氢的可用性,并且某些飞机技术的成熟度比以前预期的要慢。“虽然预计氢在本世纪下半叶会发挥越来越大的作用,但其对2050年脱碳目标的贡献将补充其他解决方案,尤其是SAF,这仍然是