摘要 背部轴肌或称背轴肌是覆盖脊髓和椎骨以及活动脊椎动物躯干的基本结构。迄今为止,形成背轴肌节的形态发生过程的潜在机制尚不清楚。为了解决这个问题,我们使用了青鳉 zic1/zic4 增强子突变体双臀鳍 ( Da ),它表现出腹侧化的背部躯干结构,导致背轴肌节形态受损和神经管覆盖不完全。在野生型中,背部皮肌节 (DM) 细胞在体节发生后降低其增殖活性。随后,一部分未分化为肌节群的 DM 细胞开始形成独特的大突起,向背部延伸以引导背轴肌节向背部运动。相反,在 Da 中,DM 细胞保持高增殖活性并主要形成小突起。通过结合 RNA 和 ChIP 测序分析,我们揭示了 Zic1 的直接靶标,这些靶标在背部体节中特异性表达,并参与发育的各个方面,例如细胞迁移、细胞外基质组织和细胞间通讯。其中,我们确定 wnt11 是调节 DM 细胞增殖和前伸活动的关键因子。我们提出,背侧肌节的背部延伸由非成肌性 DM 细胞亚群引导,并且 wnt11 使 DM 细胞能够驱动背侧肌节覆盖神经管。
特异性抗体通常被认为是互斥的,有极少数例外。应在患者的临床表现中仔细评估两种或多种肌炎特异性抗体的发生。请参阅ARUP咨询炎症性肌病 - 肌炎主题以获取有关
本研究旨在评估使用最新一代等速测力计进行的躯干肌肉力量测试的有效性和重测信度。在 15 名健康受试者中测量了躯干屈肌和伸肌的离心、等长和向心峰值扭矩。肌肉横截面积 (CSA) 和表面肌电图 (EMG) 活动分别与竖脊肌和腹直肌的峰值扭矩和亚最大等长扭矩相关。在测试和重测期间确定了峰值扭矩测量的可靠性。对于所有收缩类型,肌肉 CSA 与峰值扭矩之间始终存在显著相关性(r = 0.74 � 0.85;P < 0.001),对于伸肌和屈肌,EMG 活动与亚最大等长扭矩之间也存在显著相关性(r P 0.99;P < 0.05)。组内相关系数在 0.87 和 0.95 之间,所有收缩模式的标准测量误差均低于 9%。测试和重测之间的峰值扭矩平均差异范围为 � 3.7% 至 3.7%,没有显著的平均方向偏差。总体而言,我们的研究结果证实了使用测试的躯干模块进行扭矩测量的有效性。此外,考虑到峰值扭矩测量的出色重测信度,我们得出结论,这款最新一代等速测力计可以放心用于评估躯干肌肉功能,以用于临床或运动目的。� 2014 Elsevier Ltd. 保留所有权利。
序号 主题 涵盖时间 I) 肌电图 a) 插入活动 b) 自发活动(纤维、肌筋膜、肌强直、阳性锐利、假性肌强直) c) 干扰模式 d) 运动单位 e) 不同类型的 1. 神经源性和肌病模式。 2. 根刺激研究 3. 单纤维肌电图
治疗方法(作用机制) 1)抑制产生毒性蛋白质的DNA/RNA(ASO、shRNA等)⇒Tofersen,一种用于治疗ALS的ASO(FDA于2023年批准) 2)编辑异常的DNA/RNA使其正常化(CRISPR系统,一项诺贝尔奖获奖技术)⇒镰状细胞病/β-地中海贫血的体外基因组编辑疗法(MHRA于2023年批准) 3)将DNA/RNA引入细胞以补充(过度表达)缺失的蛋白质⇒使用AAV9过度表达用于SMA的正常SMN基因(PMDA于2020年批准)
电诊断医学中最困难的地区[1]。从理论上讲,具有纯净电势的神经性EMG,正锋利的波,高振幅和持续时间运动单位电位(MUP)和减少的干扰模式,应与含有较小的短效率的较小的,短效率的多重浓度和全部干扰模式的肌病明显区分。实际上,定性EMG分析的诊断产率是异常/肌病和神经性/肌病之间的区别,令人失望的很低。在过去的几十年中,已经开发了几种定量EMG(QEMG)方法,例如转向振幅分析,以提高EMG的诊断产率,但是到目前为止,各种QEMG技术的敏感性和特异性都与视觉检查相似[2],[3]。同样,另一种称为聚类指数方法的定量技术对神经源性产生的敏感性为92%,对肌性患者的敏感性为61%[4]。对纳入体肌炎患者(IBM)(肌病)的EMG解释特别具有挑战性,因为它可能包含肌病性和神经起源特征[5]。由于IBM也可能在临床上模仿运动神经元疾病,因此对EMG的不适当解释可能导致错误的诊断。对错误标记的IBM患者的回顾性研究发现,常规EMG通常指向神经发生障碍:它显示出纯正和正尖波,以及大多数错误标记患者的多重多重性长期神经源性MUP的过量[6]。这是非常不幸的,因为肌萎缩性侧索硬化症(ALS)是一种疾病,是一种进行性致命疾病,而预期寿命在IBM中并没有显着影响[7]。大多数QEMG方法已经出版了几十年前,是基于关于MUP形态和生理学的假设。计算机处理能力和机器学习技术的最新进展实现了一种大数据方法,该方法可以处理大量功能,而没有任何关于信号性质的基本假设。我们以前已经表明,这种方法是为汽车行业开发的,但适用于脑电图(EEG)信号,可以