图1。我们提出的框架ABS展示了敏捷和无碰撞的运动能力,其中具有全部计算和感应的机器人可以安全地浏览混乱的环境,并迅速对室内和室外的多样化和动态障碍做出迅速反应。ABS涉及双政策设置:底部的绿线表示敏捷政策的控制,红线表示运行中的恢复策略。敏捷政策使机器人能够在障碍物中快速运行,而恢复政策可以使机器人摆脱敏捷政策可能失败的风险案例。子图:(a)机器人躲避了摇摆的人腿。(b)敏捷政策使机器人能够以3的峰值运行。1 m/s。(c)在高速运动期间,机器人躲避了移动的婴儿车。(d)机器人在白雪皑皑的地形中躲过一个动人的人。(e)机器人安全地在大厅内坐着静态和动态障碍物,平均速度为2。1 m/s,峰速度为2。9 m/s。(f)机器人避免在昏暗的走廊中的障碍和移动人类,平均速度为1。5 m/s,峰值速度为2。5 m/s。 (g)机器人,平均速度为2。 3 m/s,峰值速度为3。 0 m/s,避免移动和静态垃圾箱,并爬上草坡。 视频:请参阅网站。5 m/s。(g)机器人,平均速度为2。3 m/s,峰值速度为3。0 m/s,避免移动和静态垃圾箱,并爬上草坡。视频:请参阅网站。
摘要 - 我们研究了配备有手臂的腿部机器人的移动操作问题,即腿部手机。机器人腿通常用于活动性,但通过进行全身控制提供了一个机会来扩大操纵功能。也就是说,机器人可以同时控制腿部和手臂以扩展其工作区。我们提出了一个可以通过视觉观测来自主进行全身控制的框架。我们的方法,即视觉全身控制(VBC),是由低级政策组成的,使用各个自由度来跟踪人体速度以及最终效应器位置以及基于视觉输入的速度和最终效应器位置的高级政策。我们在模拟中训练两个级别的策略,并执行SIM2REAL转移以进行实际机器人部署。我们进行了广泛的实验,并在以不同的配置(高度,位置,方向)和环境中拾取不同对象时表现出明显的优势。
图1。我们提出的框架ABS展示了敏捷和无碰撞的运动能力,其中具有全部计算和感应的机器人可以安全地浏览混乱的环境,并迅速对室内和室外的多样化和动态障碍做出迅速反应。ABS涉及双政策设置:底部的绿线表示敏捷政策的控制,红线表示运行中的恢复策略。敏捷政策使机器人能够在障碍物中快速运行,而恢复政策可以使机器人摆脱敏捷政策可能失败的风险案例。子图:(a)机器人躲避了摇摆的人腿。(b)敏捷政策使机器人能够以3的峰值运行。1 m/s。(c)在高速运动期间,机器人躲避了移动的婴儿车。(d)机器人在白雪皑皑的地形中躲过一个动人的人。(e)机器人安全地在大厅内坐着静态和动态障碍物,平均速度为2。1 m/s,峰速度为2。9 m/s。(f)机器人避免在昏暗的走廊中的障碍和移动人类,平均速度为1。5 m/s,峰值速度为2。5 m/s。 (g)机器人,平均速度为2。 3 m/s,峰值速度为3。 0 m/s,避免移动和静态垃圾箱,并爬上草坡。 视频:请参阅网站。5 m/s。(g)机器人,平均速度为2。3 m/s,峰值速度为3。0 m/s,避免移动和静态垃圾箱,并爬上草坡。视频:请参阅网站。
