希腊语“Lipos”表示脂肪,“Soma”表示身体,两者组合形成球形同心囊泡,称为脂质体。脂质体是圆形囊状磷脂分子。它包裹水滴,特别是以人工形式将药物运送到组织膜中。脂质体是一种纳米颗粒(尺寸为 100 纳米)[1]。脂质体于 1961 年由 Bangham 首次描述,这是一次偶然的发现,他将磷脂酰胆碱分子分散在水中,在此期间他发现该分子形成封闭的双层形状,具有水相部分,水相部分被脂质双层包裹[2]。脂质体很有用,因为它们可作为多种药物的载体,具有潜在的治疗或其他特性。各种载体(如纳米颗粒、微粒、多糖、凝集素和脂质体)可用于将药物靶向特定部位。脂质体药物输送因其在药物输送、化妆品和生物膜结构等各个领域的贡献而受到人们的关注 [3] 。脂质体是一种微小的气泡(囊泡),其膜由磷脂双层组成。膜通常由磷脂制成,如磷脂酰乙醇胺和磷脂酰胆碱。磷脂是两亲性的,其极性头部为亲水性,烃尾为疏水性 [4] 。
由生物膜引起的持续感染是一种紧急医学,应通过新的替代策略来解决。经典治疗和抗生素耐药性的低效率是由于生物膜形成而引起的持续感染的主要问题,这增加了发病率和死亡率的风险。生物膜细胞中的基因表达模式与浮游细胞中的基因表达模式不同。针对生物膜的有前途的方法之一是基于纳米颗粒(NP)的治疗,其中具有多种机制的NP阻碍了细菌细胞在浮游物或生物膜形式中的抗性。例如,通过不同的策略干扰与生物膜相关的细菌的基因表达,诸如银(Ag),氧化锌(Ag),氧化锌(ZnO),二氧化钛(TIO 2),氧化铜(CU)和氧化铁(Fe 3 O 4)。NP可以渗透到生物膜结构中,并影响外排泵的表达,法定感应和与粘附相关的基因,从而抑制生物膜的形成或发育。因此,通过NPS来理解和靶向细菌生物膜的基因和分子基础,指向可以控制生物膜感染的治疗靶标。同时,应通过受控的暴露和安全评估来避免NP对环境及其细胞毒性的可能影响。本研究的重点是生物膜相关的基因,这些基因是抑制具有高效NP的细菌生物膜的潜在靶标,尤其是金属或金属氧化物NP。
研究了快速热退火对射频溅射系统沉积的高 k HfO 2 超薄膜结构和电学性能的影响。分别在氧气和氮气环境下研究了薄膜特性以获得最佳快速热退火温度,以获得作为 MOS 器件结构的最佳电学效果。使用傅里叶变换红外光谱 (FT-IR) 详细研究了温度诱导退火对 HfO 2 /Si 界面的影响。分别通过椭圆偏振仪、XRD 和 AFM 研究了薄膜厚度、成分和微观结构,并显示了退火对这些参数的影响。采用 Si/HfO 2 /Si MOS 电容器结构研究了退火电介质薄膜的 I-V 和 C-V 特性。结果表明,在氮气环境下采用快速热退火 (RTA) 的 HfO 2 /Si 堆栈比在氧气环境下表现出更好的物理和电学性能。结果表明,RTA 改善了 HfO 2 /Si 的界面特性和 HfO 2 超薄膜的致密化。在氮气和氧气中分别以 700 C 退火后,沉积的薄膜为非晶态和正交晶系。我们发现,氮气退火样品的等效氧化物厚度、界面态密度、电容-电压滞后和漏电流均有所降低;此外,在正电压偏置和温度应力下,电荷俘获也几乎可以忽略不计。本文对结果进行了介绍和讨论。2011 Elsevier BV 保留所有权利。
活细胞具有脂质室,表现出各种形状和结构,有助于必不可少的细胞过程。许多天然细胞室经常采用促进特定生物学反应的复杂非层状脂质结构。改进的控制人工模型膜结构组织的方法将有助于研究膜形态如何影响生物学功能。monoolein(MO)是一种单链两亲物,在水溶液中形成非层状脂质相,在纳米材料发育,食品工业,药物输送和蛋白质结晶中具有广泛的应用。但是,即使对MO进行了广泛的研究,MO的简单等值线也很容易访问,但表征有限。对脂质化学结构的相对较小的变化如何影响自组装和膜拓扑的方法有了改进的了解,可以指导人工细胞和细胞器的建造,以建模生物学结构并促进基于纳米材料的应用。在这里,我们研究了MO和两个Mo脂质等等等等等电源之间的自组装和大规模组织的差异。我们表明,用硫代或酰胺功能组替换亲水头组和疏水碳氢化合物链之间的酯连接会导致具有不同的脂质结构的组装。
摘要:病毒感染所有细胞生命形式,并引起各种疾病和全世界的重大经济损失。大多数病毒是阳性的RNA病毒。各种RNA病毒感染感染的共同特征是诱导受感染宿主细胞中膜结构改变的形成。的确,在进入宿主细胞后,植物感染的RNA病毒靶向细胞内膜系统的首选细胞器,并重塑细胞器膜形成类似细胞器的结构,用于病毒基因组复制,称为病毒复制细胞器(VRO)或病毒复制复制复合物(VRC)。不同的病毒可能会募集不同的宿主因子进行膜修饰。这些膜封闭的病毒诱导的复制工厂提供了最佳的保护性微环境,可将病毒和宿主成分集中到可靠的病毒复制中。尽管不同的病毒更喜欢特定的细胞器来构建VRO,但至少其中一些人具有开发替代细胞器膜进行复制的能力。除了负责病毒复制外,某些病毒的VRO还可以移动,以通过内膜系统以及细胞骨架机制到达质量卵布(PD)。病毒运动蛋白(MP)和/或与MP相关的病毒运动复合物还利用了内膜 - 胞骨骨骼网络,用于对PD的传统,后代病毒通过细胞壁屏障进入相邻细胞。
1. 引言 为了更详细地了解基因多态性及其意义,有必要定义叶酸-蛋氨酸循环和甲基化的概念。叶酸-蛋氨酸循环是确保体内甲基化所必需的。甲基化是向物质中添加甲基以激活它们。甲基化是一个非常重要的过程,它影响基因表达(活性)、解毒-激活肝脏解毒的II期、维持能量代谢、提供膜结构、髓鞘、乙酰胆碱代谢、免疫调节、神经递质代谢-合成多巴胺、血清素、去甲肾上腺素、乙酰胆碱;褪黑激素的合成、衰老(“表观遗传时钟”-DNA甲基化越少,衰老越快),确保各种基因的开启和关闭、DNA分子的复制(加倍)、DNA修复和重组、蛋白质生物合成、DNA分子的保护和恢复。甲基化是清除体内毒素的关键方法。完善的甲基化过程使毒素和重金属更容易被清除,从而降低患癌症的风险。与异常甲基化有关的一些疾病包括:心血管疾病、骨质疏松症、糖尿病、行为障碍、早产、宫颈癌、肠癌和肺癌。甲基化还负责通过控制同型半胱氨酸水平来调节炎症过程。在甲基化障碍的情况下,血液中的同型半胱氨酸水平会升高,从而增加患心血管疾病的风险。甲基化是将甲基基团附着到某些分子上以激活它们的过程。首先,一种非常重要的氨基酸——蛋氨酸进入人体时会
疟原虫通过裂殖生殖复制,即异步核分裂,然后是半同步分裂和胞质分裂。成功的分裂需要双层膜结构,即内膜复合体 (IMC)。在这里,我们证明 Pf FBXO1 (PF3D7_0619700) 对无性分裂和配子体成熟都至关重要。在弓形虫中,FBXO1 同源物 Tg FBXO1 对子细胞支架的发育和子细胞 IMC 的组成部分至关重要。我们证明 Pf FBXO1 在发育中的裂殖子顶端区域附近形成类似的 IMC 起始支架,并单侧定位在恶性疟原虫的配子体中。虽然 Pf FBXO1 最初定位于分裂寄生虫的顶端区域,但随着分裂的进展,它会显示出类似 IMC 的定位。类似地,Pf FBXO1 定位于配子体中的 IMC 区域。诱导敲除 Pf FBXO1 后,寄生虫会发生异常的分节和有丝分裂,产生无法存活的子代。缺乏 Pf FBXO1 的配子体形状异常,无法完全成熟。蛋白质组学分析确定 Pf SKP1 是 Pf BXO1 的稳定相互作用伙伴之一,而其他主要蛋白质包括多种 IMC 膜蛋白和膜蛋白。我们假设 Pf FBXO1 是恶性疟原虫有性和无性阶段中 IMC 生物合成、染色体维持、囊泡运输和泛素介导的蛋白质翻译调控所必需的。
M. Vanmathi A,,A。PriyaA,M。S. Tahir A,Sahir A,M。S. Razakh a,M。M. Senthil Kumar B,*,R。Indrajit C,R。Indrajit C,V。Elango D,G。Senguttuvan E,R v. Mangalaraja f。泰米尔纳德邦,印度-600 048 B机械工程学院,Vellore技术研究所,钦奈,泰米尔纳德邦,泰米尔纳德邦,印度-600 127 c物理系印度纳杜(NADU),600 089 E物理学系,安娜大学蒂鲁奇拉帕利大学工程学院毒性。进一步的金属掺杂可改变电导率,电气和光学特性。在这项研究中,使用喷雾热解技术进行了SN掺杂TIO 2的沉积。通过使用Hall效应技术获得了电性能,并通过X射线衍射和EDAX扫描电子显微镜分析膜的结构特性。X射线衍射的结果表明,通过喷雾热解沉积的薄膜是多晶的多晶,在(002)场的方向上优先取向。SEM分析表现出通过喷雾热解沉积的薄膜的膜结构。使用HALL效应技术获得了电导率的结果。(2024年6月7日收到; 2024年9月26日接受)关键词:二氧化钛(TIO 2),X射线衍射,扫描电子显微镜(SEM),Hall效果1。今天的引言,众所周知,大多数半导体使用二氧化钛纳米颗粒[1]。TiO 2在传感器[2],抗菌剂[3],氢[4],照片催化剂[5]和水蒸发[6]中找到了其应用。tio 2以其良好的光学特性,廉价,无毒和化学稳定而闻名。
近年来,细菌种群已被改造为生物传感器,通过开发新的治疗方法和诊断方法,能够改善人类健康。如今,工程细菌种群可以被远程控制,以根据需要执行一些医疗行动;然而,从网络安全角度来看,这带来了至关重要的担忧。例如,最近提出了第一批网络生物攻击之一,以探索使用工程细菌产生分布式拒绝服务并破坏生物膜形成的可行性,生物膜是细菌抵御外部因素的天然保护。为了减轻这种网络生物攻击的影响,本文提出了两种新的缓解机制:群体猝灭和扩增。一方面,群体猝灭专注于发射分子来阻止网络生物攻击发送的分子。另一方面,扩增方法发射分子来增加创建生物膜结构所需分子的百分比。为了测量两种缓解技术在动态场景中的性能,我们实施了分布式拒绝服务攻击的不同配置,并评估了信道衰减和信号与干扰加噪声 (SINR)。结果,我们观察到这两种方法都减少了网络生物攻击造成的影响,并检测到它们之间的差异。群体猝灭机制表现出更好的结果,尽管它没有根据不同的攻击配置调整其行为,而是静态响应。相比之下,振幅缓解技术完全适用于对生物膜形成有不同影响的攻击配置。 2021 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可的开放获取文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
通过茎/接头区域控制微管相关蛋白的含力特性:来自NDC80复合体Ilya B. Kovalenko的见解俄罗斯莫斯科的莫斯科州立大学Lomonosov;中国深圳市MSU-BIT大学B深圳; C俄罗斯莫斯科物理学药理论理论问题中心。*应将通信发送至p.s.o和n.b.g(orekhov_p@smbu.edu.cn,ngudimch@gmail.com)在机械载荷下许多微管相关蛋白(MAPS)功能。在其中,运动蛋白和被动耦合器将微管与其他细胞骨骼细丝,膜结构和不同的支架联系起来,以实现细胞形状的变化,运动和其他重要过程。NDC80的键动力学复合物将力从微管拆卸到细胞分裂期间的染色体运动。最近,与沿正端方向拉动相比,当朝着微管的负末端拉动时,该复合物已被证明可以更容易从微管脱离。在这里,我们使用了粗粒的分子动力学和布朗动力学模拟来解释方向载荷对从微管的NDC80复合物解开的不对称效应,然后将我们的发现概括为其他地图。我们发现,由朝向微管的正端倾斜的NDC80的僵硬茎产生的杠杆臂对于这种复合物的不对称解开至关重要,类似于Dynein的络合物。,EB蛋白,微管交联PRC1和驱动蛋白预计缺乏明显的解体不对称性,这是由于它们几乎垂直于微管壁上的垂直锚固,或者是由于其接头区域的较高灵活性与微管结构域紧密相关。因此,我们的研究突出了地图的一些设计原理,并解释了它们的远端部分如何赋予,调节或消除解开外部载荷方向的依赖性。此信息加深了我们对载荷特性和各种图的功能的理解,并可能指导具有预定义机械特性的合成蛋白系统的设计。