摘要。纠缠是量子信息协议的基本资源,而超越来越性的人因其高容量特征而受到了越来越多的关注。增加了超牢房的尺度,即超牢房系统中的模式数对于增强其在量子信息处理中的能力至关重要。在这里,我们证明了三个自由度(DOF)的大规模连续变量(CV)超牢房的产生,包括Laguerre的方位角和径向指数 - 高斯(LG)模式和频率。在我们的实验中,在原子蒸气中从四波混合过程确定生成216对超牢房模式。此外,我们还表明,也可以从该系统中生成相干LG叠加模式之间的纠缠。在三个DOF中,如此大规模的简历超牢房呈现出一个有效的方案,可显着提高简历系统的信息能力。我们的结果为研究简历量子信息提供了一个新的平台,并为构建高容量平行和多道CV量子信息方案的途径开放了途径。
由于其电子特性、易于制造和化学稳定性,金 (Au) 是等离子体应用中最广泛使用的造币金属。它的介电函数 ε (λ)(其中 λ 是光的波长)在可见光谱的长波长范围内产生等离子体共振。其他金属,如铝 (Al) 和银 (Ag),在较短波长范围内具有等离子体共振,但对于纳米技术来说更难。[12] 虽然 ε (λ) 的实部决定发生等离子体共振的波长,但其虚部控制等离子体共振强度。[13] 十年来,对金、银和铝替代材料的研究激增,以利用整个可见光和近红外光谱的等离子体共振。[14–16]
承认人权、每个人都有权在法律下享有平等待遇的政府——正在加速他们的攻击。</div>独裁政权在收编或规避旨在支持基本自由的规范和制度以及向希望这样做的其他人提供援助方面变得更加有效。在民主制度历史悠久的国家,内部势力利用其制度的缺陷,扭曲国家政治,以促进仇恨、暴力和不受约束的权力。与此同时,那些在民主和独裁之间挣扎的国家,正日益倾向于后者。全球秩序正接近临界点,如果民主的捍卫者不共同努力帮助保障所有人的自由,独裁模式将占上风。
摘要:柔顺机构广泛应用于精密工程、微纳操作、微电子等前沿科技领域,对多自由度柔顺机构的需求急剧增加。随着自由度的增加,柔顺机构的结构变得越来越复杂。本文提出了一种基于曲梁单元的六自由度柔顺机构。该柔顺机构具有结构简单、自由度多的优点。利用等几何分析法,建立了该机构的模型。静态分析表明可生成六个自由度。通过3D打印开发了该机构的样机。进行了六自由度加载试验。输出与输入具有高度的线性关系,结构间耦合性较低。我们相信这项研究为基于曲梁单元的柔顺机构设计迈出了开创性的一步。
摘要:手臂、手和指尖的活动功能和感觉信息的丧失妨碍了患者的日常生活活动 (ADL)。现代仿生假手可以弥补失去的功能并实现多自由度 (DoF) 运动。然而,由于传感器有限和缺乏稳定的分类算法,市售的假手通常具有有限的自由度。本研究旨在提出一种通过表面肌电图 (sEMG) 估计手指关节角度的控制器。用于训练的 sEMG 数据是使用商用 EMG 传感器 Myo 臂带收集的。提取时域中的两个特征并将其输入到具有外生输入的非线性自回归模型 (NARX) 中。使用 Levenberg-Marquardt 算法对 NARX 模型进行预选参数训练。与目标相比,模型输出的回归相关系数 (R) 在所有测试对象中均大于 0.982,信号范围为 [0, 255] 的任意单位时均方误差小于 10.02。研究还表明,所提出的模型可用于日常生活运动,具有良好的准确性和泛化能力。
分析表明,经济自由和稳定性之间存在很强的相关性。根据作者获得的线性回归模型,经济自由对稳定性有很大的影响。模型显示,IEF 的大多数组成部分都会增加稳定性,而一些组成部分则会降低稳定性。这意味着相同的因素会以不同的方式影响经济自由和稳定性。特别是,税收对稳定性有非常积极的影响。同时,税收显然会降低经济自由。这一事实使我们能够解决政治家和科学家之间现有的矛盾,他们对经济自由对稳定性的影响有不同的评估。可以说,虽然经济自由总体上对稳定性有很强的积极影响,但它也可能产生负面影响。
摘要 本研究重新审视了单自由度波浪能转换器的理论极限。本文考虑了海洋能系统任务 10 波浪能转换器建模和验证工作中使用的浮球进行分析。推导出解析方程来确定运动幅度、时间平均功率和动力输出 (PTO) 力的界限。研究发现一个独特的结果,即波浪能转换器吸收的时间平均功率可以仅由惯性特性和辐射流体动力学系数来定义。此外,还推导出 PTO 力幅的独特表达式,当使用电阻控制来最大化发电量时,该表达式提供了上限和下限。对于复共轭控制,这个表达式只能提供下限,因为理论上没有上限。这些界限用于比较浮球利用波动或升沉运动提取能量时的性能。分析表明,由于每种振荡模式的流体动力学系数不同,因此会存在不同的频率范围,从而提供更好的能量捕获效率。研究了运动约束对功率吸收的影响,同时还利用了非理想的动力输出,发现可以减少与双向能量流相关的损失。计算非理想 PTO 时间平均功率的表达式由机械电效率和 PTO 弹簧与阻尼系数之比修改。PTO
我要感谢我的导师:Markus Wilde 博士、Tiauw Go 博士和 James Brenner 博士,感谢他们在我在佛罗里达理工学院的整个学术生涯中给予我的耐心、指导和支持。如果没有他们的专业知识,这篇论文就不可能完成。我要特别感谢 Wilde 博士,他从大三设计到大四设计一直指导这个项目,并将其变成一个论文项目。这个项目给了我一个成长为工程师的绝佳机会。我还要感谢我的矩阵主管 Jose Nunez 博士,他给了我一个新毕业的工程专业学生机会,并给了我在 NASA KSC 工作的机会。特别感谢我的 NASA 导师:Mike DuPuis 和 Michael Johansen,感谢他们的耐心以及他们在建模和控制方面的丰富知识。当然,我要向 NASA KSC 飞行技术部门的所有人表示感谢。最后,我要感谢我的朋友 James (Jimmy) Byrnes、Andrew Czap、Juliette Bido 和 Charles (Joe) Berry 在本论文的整个过程中给予的支持和投入。我很自豪地说,我和他们是同班同学。
我要感谢我的导师:Markus Wilde 博士、Tiauw Go 博士和 James Brenner 博士,感谢他们在我在佛罗里达理工学院的整个学术生涯中给予我的耐心、指导和支持。如果没有他们的专业知识,这篇论文就不可能完成。我要特别感谢 Wilde 博士,感谢他从大三设计到大四设计一直指导这个项目,并将其变成一个论文项目。这个项目给了我一个成长为工程师的绝佳机会。我还要感谢我的矩阵主管 Jose Nunez 博士,感谢他给一个刚毕业的工程研究生一个机会,并给了我在 NASA KSC 工作的机会。特别感谢我的 NASA 导师:Mike DuPuis 和 Michael Johansen,感谢他们的耐心以及他们在建模和控制方面的丰富知识。当然,我要向 NASA KSC 飞行技术部门的所有人表示感谢。最后,我要感谢我的朋友 James (Jimmy) Byrnes、Andrew Czap、Juliette Bido 和 Charles (Joe) Berry 在本论文的整个过程中给予的支持和投入。我很自豪地说我和他们是同一届的。