《IEEE 量子电子学选题期刊》(JSTQE)邀请自由空间激光通信进展方面的论文投稿。自由空间激光通信这一新兴领域利用庞大的地面光纤行业以及最近大量廉价太空发射,成为解决太空星座交叉链路、高带宽数据下行链路和载人航天通信需求的现实解决方案。随着全球多个组织继续在该领域进行技术开发和系统设计创新,lasercom 有望在不久的将来继续彻底改变太空通信领域,为通信瓶颈以及系统尺寸、重量和功率限制提供独特的解决方案。《IEEE 量子电子学选题期刊》邀请自由空间激光通信领域的论文投稿。本期 JSTQE 旨在重点介绍开发尖端 lasercom 技术的最新进展和趋势。感兴趣的领域包括(但不限于):
Footnotes (1) Frequency response and range measured on-axis in half-space environment with recommended EQ (2) Sensitivity measured on-axis in half-space environment averaged 100 Hz – 10 kHz using recommended high-pass protection (3) Maximum SPL calculated from sensitivity and power handling specifications, exclusive of power compression (4) Bose Professional extended-lifecycle test using pink noise filtered to meet IEC268-5, 6-DB波峰因子,持续500小时的持续时间(5)AES标准2小时持续时间IEC系统噪声(6)在通用音频应用中使用时,每EN60529测试至IP55。在每EN5 54-24中测试了在整个空间环境中测量的火灾和疏散通知申请(7)
1885 年发明的电报是无线技术的第一个例子。随着时间的推移,技术也在不断变化。目前,每个用户都希望拥有高速网络,而 RF 网络无法提供这种网络。因此,我们必须寻求替代技术,如光纤,以满足我们的需求。近年来,光传输越来越受到关注 [1]。信息通过光传输以无线方式传输,光传输也称为自由空间光学或光无线通信 (FSO)。FSO 是一种允许我们通过大气通道发送光形信号的技术。接收器端的 PD(光电二极管)接收由激光或 LED 产生并通过大气发送的光信号。FSO 通常通过红外光谱发送信息信号。尽管大气环境对红外波长的影响较小,但由于大气分子活动,某些范围会发生扭曲 [2]。最古老的方法之一,自由空间光学,可以追溯到公元七世纪。当时,罗马人和希腊人更倾向于利用阳光进行通信 [3]。接下来将介绍火、烟、信号旗和其他点对点通信技术的使用 [4]。其中一种
摘要:硅光子学最近已将其应用扩展到提供自由空间发射以检测或操纵外部物体。最显著的例子是硅光学相控阵,它可以引导自由空间光束以实现芯片级固态激光雷达。其他例子包括自由空间光通信、量子光子学、成像系统和光遗传学探针。与由体光学元件组成的传统光学系统相比,硅光子学将光学系统小型化为具有许多功能波导元件的光子芯片。通过利用成熟的单片 CMOS 工艺,硅光子学实现了大批量生产、可扩展性、可重构性和并行性。在本文中,我们回顾了基于硅光子学的光束控制技术的最新进展,包括光学相控阵、焦平面阵列和色散光栅衍射。还讨论了用于产生准直、聚焦、贝塞尔和涡旋光束的各种光束整形技术。最后,我们展望了硅光子学在自由空间应用的前景和挑战。
摘要 - 基于激光技术的免费空间光学(FSO)通信是下一代超高数据速率链接从卫星到地面和反之亦然的有前途的机会。为了调查并证明空间对地面激光链路的可行性,我们在慕尼黑大学的研究中心空间(UNIBW M)进行了一个小型卫星任务。此任务的核心是非对位轨道(NGSO)中的卫星雅典娜1。除其他有效载荷外,该卫星配备了光学激光终端,用于高速数据向上和下行链路。地面段将在德国Neubiberg的Unibw M校园内组成一个光学地面站(OGS)。在本文中,我们提供了计划的FSO通信实验的概述,尤其是介绍和描述OGS的设置。OGS目前正在建设中,计划全面运营能力为2023年底。索引术语 - 激光通讯,光学地面站,自由空间光学通信,小型卫星任务
基于抽象的量子技术将为系统工程师提供确保数据通信的新功能。英国AIRQKD项目已实施了一个免费的空间光学量子密钥分布(QKD)系统,以实现不断生成的对称加密密钥。生成的密钥的用例之一是将车辆 - 所有(V2X)通信保护。V2X申请将受益于QKD为QUASTUM SOCORES提供的证书 - 免费安全保障。如何检查FSO -QKD如何集成到V2X体系结构中。V2X的概述具有FSO -QKD可以保护V2X数据的作用,尽管存在一些障碍。6G通信的问题之一是V2X设备之间的潜在线(LOS)考虑。检查了LOS所需的建模,以分析建筑物在6G体系结构中的基础架构链接的中断性能。该模型的结果表明,如果要依靠6G LOS通信来用于将来的安全性 - 关键的V2X应用程序,则需要进一步的工作。
摘要 — 近年来,自由空间光 (FSO) 通信因其独特的特点而变得非常重要:带宽大、免许可频谱、数据速率高、部署简便快捷、功耗低、质量要求低。FSO 通信使用近红外 (IR) 和可见光波段的光载波在地球大气层内建立地面链路、卫星间/深空链路或地对星/星对地链路。它还可用于遥感、射电天文学、军事、灾难恢复、最后一英里接入、无线蜂窝网络回程等。然而,尽管 FSO 通信潜力巨大,但其性能受到大气信道的不利影响(即吸收、散射和湍流)的限制。在这三种影响中,大气湍流是一个主要挑战,它可能导致系统的误码率 (BER) 性能严重下降,并使通信链路不可行。本文全面介绍了 FSO 通信系统在地面和空间链路中面临的各种挑战。它将提供各种性能缓解技术的详细信息,以使 FSO 系统具有高链路可用性和可靠性。本文的第一部分将重点介绍对 FSO 系统在地面和空间链路中的性能构成严重挑战的各种类型的损伤。本文的后半部分将为读者提供对 FSO 系统中物理层和上层(传输、网络或链路层)中使用的各种技术的详尽回顾,以对抗大气的不利影响。此外,本研究以独特的方式提供了使用各种信道模型和检测技术的 FSO 编码和调制方案的当前文献。它还介绍了 FSO 系统中最近开发的一种使用轨道角动量来对抗大气湍流影响的技术。
摘要 汽车导航严重依赖于自由空间检测。不幸的是,传统方法在恶劣的天气条件下会遇到困难,尤其是在白天。本文提出了一种解决方案,使用对比度恢复方法对车载摄像头捕获的图像进行处理。在几个方面,所提出的方法都推动了现有技术的进步。首先,通过计算最短路线图,可以更好地分割感兴趣的雾区域。其次,一起计算雾密度和地平线位置。然后,该方法通过假设道路平坦并检测垂直物体来恢复道路的对比度。最后,通过分割车辆前方的连通分量来确定自由空间区域。为了预测该方法的有效性,进行了实验验证。在从车载摄像头捕获的视频序列中提取的样本图像上显示了各种结果。所提出的方法是对依赖颜色分割和立体视觉的现有自由空间区域检测方法的补充。
摘要 — 未来无线通信的路线图有望利用所有适合传输的频谱带,从微波到光频率,以支持比目前部署的解决方案快几个数量级的数据传输和更低的延迟。目前尚未得到充分利用的中红外 (mid-IR) 频谱是这种设想的全光谱无线通信范式的基本组成部分。中红外区域的自由空间光 (FSO) 通信最近引起了极大兴趣,因为它们具有低传播损耗和高大气扰动耐受性的内在优点。未来可行的中红外 FSO 收发器的发展需要半导体源来满足高带宽、低能耗和小占用空间的要求。在这种情况下,量子级联激光器 (QCL) 似乎是一种有前途的技术选择。在这项工作中,我们展示了一个由 4.65 µ m 直接实现的中红外 FSO 链路的实验演示
过去几年,自由空间光通信 (FSO) 已成为射频通信的可行替代方案。它提供了一种有前途的高速点对点通信解决方案。然而,大气吸收、散射和湍流会显著降低无线光通信,从而降低设备效率。由于上述大气原因导致的信号衰减是影响设备效率的另一个主要因素。观察到大气湍流条件被实施到不同的 FSO 系统模型中,例如单输入单输出 (SISO)、多输入多输出 (MIMO)、波分复用 MIMO (WDM-MIMO) 和出于各种原因使用 Gamma-Gamma 模型的提议模型双多输入多输出 (DMIMO)。使用 OptiSystem 7.0 软件进行模拟,以研究各种天气条件(晴天、霾天和雾天)如何影响信道的性能。模拟结果表明,为 FSO 系统实施双多输入多输出 (DMIMO) 技术可为各种范围提供高质量因数,同时仍在接收器端实现准确的传输数据。在晴空、霾和雾等大气湍流条件下,信号功率水平、质量因数和链路距离范围的性能改善已得到证实。