抽象的静息状态功能性MRI(RS-FMRI)被广泛用于检查婴儿的动态大脑功能发育,但是这些研究通常需要精确的皮质细胞层析图,由于婴儿和成人之间功能性大脑的实质性差异,无法直接从基于成人的功能性分层图中借用。创建婴儿特异性皮层拟层图是高度期望的,但由于在获取和加工婴儿脑MRIS上的困难,因此仍然具有挑战性。在这项研究中,我们利用了1064个高分辨率的纵向RS-FMRIS,从197个通常从出生到24个月的婴儿和幼儿开始,他们参加了Baby Connectome项目,以开发第一组婴儿,表面性的,表面基于表面的皮质功能型映射。为了建立跨个体的有意义的皮质功能对应关系,我们使用皮质折叠几何特征和功能连接性(FC)进行了皮质共同注册。然后,我们根据年龄相关和与年龄无关的皮质划线图产生了基于跨个体的局部FC的局部梯度图,在婴儿期间具有超过800个细粒度的包裹。这些分析图揭示了复杂的功能发育模式,例如局部梯度,网络规模和局部效率的变化,尤其是在产后的前9个月。我们的生成细粒婴儿皮层功能分析图可在https:// www上公开获得。nitrc.org/projects/infanturfatlas/用于前进儿科神经影像学领域。
由PTEN缺乏症驱动的结直肠癌(CRC)表现出很高的转移风险,肿瘤阶段的进步和抗化疗的耐药性,在尚未开发出有效的治疗。在这项研究中,我们在CRC中进行了合成致命药物筛查,发现缺陷PTEN缺乏CRC细胞非常容易受到MDM2抑制作用。MDM2抑制剂治疗或其沉默选择性地抑制了缺乏PTEN的CRC在体外和小鼠模型中的生长。从机械上讲,PTEN损失增加了主动AKT的水平,随后增加了MDM2磷酸化,从而限制了PTEN - / - CRC细胞中的p53功能。MDM2反过来抑制CRC中激活的p53,尤其是在PTEN - / - CRC细胞中。MDM2抑制剂的合成致死作用在很大程度上取决于p53,因为p53沉默的细胞或缺乏p53的细胞未能在PTEN缺乏细胞中表现出合成的致死性。我们进一步表明,MDM2抑制导致Bcl2-BAX比率的p53依赖性逆转,这有助于PTEN缺陷CRC中线粒体介导的凋亡细胞死亡。这项研究表明,MDM2的药理学靶向可能是PTEN缺陷CRC的潜在治疗策略。
合成致死性(SL)发生,而两个基因中的单个突变都没有显着影响。此概念也可以扩展到SL的三个或更多基因。计算方法和实验方法来预测和验证SL基因对,特别是对于酵母和大肠杆菌。但是,目前缺乏一个专门的平台来收集微型SL基因对。因此,我们为微生物遗传学设计了一个合成相互作用数据库,该数据库收集了13,313个SL和2,994个合成救援(SR)基因对,该基因对,文献中有86,981个假定的SL对通过281种细菌基因组中的同源式transe方法获得。我们的数据库网站提供了多种功能,例如搜索,浏览,可视化和爆炸。基于s中的SL相互作用数据。酿酒酵母,我们回顾了重复的重要性问题,并观察到重复的基因和单例在我们考虑个体和SL时具有相似的比例。微生物合成致死和救援数据库(MSLAR)有望成为对微生物SL和SR基因感兴趣的研究人员的有用参考资源。MSLAR可以自由地向所有人开放,并在网络上可在http://guolab.whu上找到。edu.cn/mslar/。
•我们已经发现了具有高度选择性的有效的小分子抑制剂,包括针对密切相关的Aurora激酶•跨癌症细胞系列面板上的细胞活力评估跨癌细胞系的细胞活力评估表明,高度选择性的ORIC PLK4抑制剂表明,与TRIM37低细胞相比,在TRIM37较高的癌细胞中,APOPTIM固定型均具有更大的效力,•APOPTIM•APOPTIM CONSIIR cONSTIM•APOPTIM固定性•选择性PLK4抑制剂的合成致死性相互作用•PLK4 G95L表明,PLK4的结合和抑制驱动选择性ORIC抑制剂的细胞活性,证明其功效是在target上•oriC PLK4抑制剂阻止了与PLK4的稳定性
合成致死是一种遗传相互作用,指两个基因(但不是单独一个基因)丢失,会导致细胞死亡,并允许靶向疗法选择性地杀死肿瘤细胞,同时在很大程度上保护正常细胞。PARP 抑制剂获批用于治疗 BRCA1/2 突变癌症,这是合成致死概念的首个临床验证 (1)。鉴于 PARP 抑制剂的成功,人们对开发下一代合成致死癌症疗法产生了浓厚的兴趣。基于 CRISPR-Cas9 的功能基因组学的最新进展,加上对癌症遗传学知识的不断加深,正在加速针对癌症中新的遗传依赖性的靶向治疗。USP1 编码一种 785 个氨基酸的半胱氨酸蛋白酶,属于 USP 去泛素化酶家族 (2)。为了优化催化活性,USP1 与 UAF1 (2) 形成异二聚体复合物,UAF1 是一种含有 WD40 重复序列的蛋白质,也能刺激 USP46 和 USP12 (3)。 USP1 – UAF1 复合物使参与 DNA 损伤反应的几种底物去泛素化,包括单泛素化的 PCNA 和 FANCD2 (2, 4 – 6)。USP1 在跨损伤合成 (TLS) 和模板转换 (TS) DNA 损伤耐受过程中起着关键作用
DEAD/H-box 解旋酶几乎参与了 RNA 代谢的各个方面,包括转录、前 mRNA 剪接、核糖体生物合成、核输出、翻译起始、RNA 降解和 mRNA 编辑。大多数解旋酶在各种癌症中上调,其中一些突变与多种恶性肿瘤有关。最近,合成致死 (SL) 和合成剂量致死 (SDL) 方法正在成为癌症研究的主要领域,其中利用癌症相关基因的遗传相互作用作为治疗靶点。几种 DEAD/H-box 解旋酶,包括 DDX3、DDX9 (Dbp9)、DDX10 (Dbp4)、DDX11 (ChlR1) 和 DDX41 (Sacy-1),已在人类和不同模型生物中进行了 SL 分析。是否可以利用 SDL 来识别 DEAD/H-box 解旋酶过表达癌症中的可用药物靶点仍有待探索。在本综述中,我们分析了多种癌症类型中 DEAD/H-box 解旋酶子集的基因表达数据,并讨论了如何利用它们的 SL/SDL 相互作用进行治疗。除了讨论针对 DEAD/H-box 解旋酶的药物发现中的一些挑战外,我们还总结了临床应用的最新进展。
合成致死 (SL) 是指一种遗传相互作用,其中两个基因同时受到干扰会导致细胞或生物体死亡,而当其中一个基因发生改变时,细胞或生物体仍能保持活力。对这些基因对的实验探索和计算生物学中的预测模型有助于我们理解癌症生物学和开发癌症疗法。我们广泛回顾了合成致死基因对研究中的实验技术、公共数据源和预测模型,并在此详细介绍了各种预测模型的生物学假设、实验数据、统计模型和计算方案,推测它们对基于个体样本和基于种群的合成致死相互作用的影响,讨论了现有 SL 数据和模型的优缺点,并强调了 SL 发现中的潜在研究方向。
摘要 弥漫性大 B 细胞淋巴瘤 (DLBCL) 是最常见的侵袭性淋巴系统恶性肿瘤,是一种高度异质性的疾病。在本研究中,我们进行了全基因组和转录组测序以及全基因组 CRISPR-Cas9 敲除筛选,以研究活化的 B 细胞样 DLBCL 细胞系 (RC-K8)。我们在 RC-K8 中发现了一种独特的遗传必需性模式,包括对 CREBBP 和 MDM2 的依赖性。对 CREBBP 的依赖性与涉及 EP300 的平衡易位有关,这导致蛋白质的截短形式缺乏关键的组蛋白乙酰转移酶 (HAT) 结构域。CREBBP 和 EP300 基因(B 细胞淋巴瘤中两个经常突变的表观遗传调节剂)之间的合成致死相互作用在之前发表的 CRISPR-Cas9 筛选和抑制剂测定中得到了进一步验证。我们的研究表明,将无偏功能筛选结果与基因组和转录组数据相结合,可以识别 DLBCL 中常见和独特的可用药物弱点,并且组蛋白乙酰转移酶抑制可以成为 CREBBP 或 EP300 突变病例的治疗选择。
药物过量死亡是可以预防的,但我们几乎没有机会收集有关药物过量受害者的生活和与各种系统互动的全面信息,以更好地了解哪些因素可能导致这些死亡。丹恩县药物过量死亡评估 (OFR) 使我们能够检查和确定导致药物过量死亡的因素,确定受药物使用影响的个人护理系统中的挑战,并使用这些信息为这些系统内的政策、实践和计划提供信息。