全国自杀预防热线提供 150 多种语言的帮助。请致电 1-800-273-8255 或发送短信 HELLO 至 741741。西班牙语,品牌 1-888-628-9454。如果您是聋人或听力障碍者,请致电 1-800-799-4889。费城自杀与危机中心提供有关抑郁、自残、绝望、愤怒、成瘾和关系问题的指导和评估,电话是 215-686-4420。退伍军人危机聊天电话是 1-800-273-8255,短信是 838255。特雷弗项目为 25 岁及以下的 LGBTQ+ 青年提供危机支持。请致电 1-866-488-7386,发送短信 START 至 678678,或开始聊天。
目的:葡萄膜黑色素瘤 (UM) 是成人中最常见的眼癌。即使成功治疗原发性病变,约 50% 的 UM 患者也会在肝脏中发展为转移性 UM (mUM)。mUM 对目前的化疗和免疫疗法具有耐药性,大多数 mUM 患者在一年内死亡。UM 的特征是 GNAQ/GNA11 中的功能获得性突变,编码 G α q 蛋白。我们最近发现,G α q 致癌信号传导回路涉及一种非典型通路,不同于经典的 PLC β 和 MEK-ERK 激活。GNAQ 通过粘着斑激酶 (FAK) 促进关键致癌驱动因子 YAP1 的激活,从而将 FAK 确定为 GNAQ 下游的可用药信号传导中心。然而,靶向疗法通常会激活补偿性耐药机制,导致癌症复发和治疗失败。
目的:葡萄膜黑色素瘤 (UM) 是成人中最常见的眼癌。即使成功治疗原发性病变,约 50% 的 UM 患者也会在肝脏中发展为转移性 UM (mUM)。mUM 对目前的化疗和免疫疗法具有耐药性,大多数 mUM 患者在一年内死亡。UM 的特征是 GNAQ/GNA11 中的功能获得性突变,编码 G α q 蛋白。我们最近发现,G α q 致癌信号传导回路涉及一种非典型通路,不同于经典的 PLC β 和 MEK-ERK 激活。GNAQ 通过粘着斑激酶 (FAK) 促进关键致癌驱动因子 YAP1 的激活,从而将 FAK 确定为 GNAQ 下游的可用药信号传导中心。然而,靶向疗法通常会激活补偿性耐药机制,导致癌症复发和治疗失败。
针对基因变异的癌症疗法是甲状腺癌领域的一个热门话题,甲状腺癌经常携带 RAS 、 RAF 和 RET 基因突变。不幸的是,美国食品和药物管理局批准的 BRAF 抑制剂对 BRAF 突变型甲状腺癌的治疗效果相对较低;此外,癌症经常获得耐药性,从而阻碍有效治疗。基因组学和转录组学的最新进展使人们更全面地了解甲状腺癌中存在的各种突变,包括驱动突变和信使突变。此外,我们对癌症的理解表明,致癌突变会驱动肿瘤发生并诱导癌细胞代谢重新布线,从而促进突变细胞的存活。合成致死 (SL) 是一种中和突变基因的方法,这些基因以前被认为无法通过传统的基因型靶向治疗进行靶向。由于这些代谢事件是癌细胞特有的,我们有机会开发新的疗法,专门针对肿瘤细胞而不影响健康组织。本文将介绍基于代谢的癌症治疗的发展,重点介绍甲状腺癌中的代谢 SL 概念。最后,我们将讨论代谢重编程的基本含义及其对甲状腺癌 SL 未来发展方向的作用。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2022 年 2 月 20 日发布。;https://doi.org/10.1101/2022.02.18.479480 doi:bioRxiv 预印本
简单的摘要:PARP抑制剂在同源重组有效肿瘤中的临床成功率成功了。数十年来,努力一直集中在确定确定基本肿瘤基因的遗传相互作用上,最近,SL相互作用以确定针对持续性癌症再育的组合治疗。目前,CRISPR筛选方法的可行性已成为揭示新的SL或可行相互作用者在癌症的生物学和治疗中的现状。我们介绍了众多实验室的最新研究,这些研究利用了全基因组远期遗传CRISPR筛查工具和方案,以鉴定癌症生物标志物,遗传相互作用和新型疗法。的确,如今的研究重点是基于SL相互作用定义创新的组合处理。通过耦合不同的药物,可以降低浓度处理,从而降低毒性。CRISPR筛查技术对癌症研究深远,以促进合并疗法的强大进步。
作者手稿已通过同行评审并接受出版,但尚未编辑。作者手稿于 2021 年 4 月 9 日首次在线发表;DOI:10.1158/2159-8290.CD-20-1508
尽管做出了巨大的努力,但针对WNT途径的治疗策略仍无法临床上市。Wnt-B catenin信号在正常组织稳态期间控制干细胞的普遍作用使可用治疗级分子的靶向毒性成为阻止其临床引入的重要局限性。Kaur等人(2021)在本期EMBO分子医学中的文章表明,使用Wnt信号抑制剂对Wnt上瘾的癌细胞进行处理会诱导BRCALENS的状态,从而导致对PARP抑制作用过敏。这是诱发合成致死性的一个新例子,可以为PARP抑制剂的新适应症铺平道路,或者可能有助于期待已久的临床引入针对WNT途径的治疗剂。
生成 KO 动物使观察整个生物体基因被破坏时的情况成为可能,并能解答各种疾病的起源和发展过程。虽然经过漫长的历程才开发出现在易于生成的模型,但如今这些动物模型的生成效率已经足够高。生成 KO 小鼠的最初两种方法是基因捕获(Gossler 等人,1989 年)和基因打靶(Mansour 等人,1988 年)。这两种方法都需要胚胎干细胞 (ESC),产生的是嵌合小鼠,既不经济也不省时。转座子系统也是破坏小鼠基因的实用工具(Dupuy 等人,2001 年),然而,基于转座子的方法后来被证明在创建转基因动物方面非常有效(Garrels 等人,2011 年,Katter 等人,2013 年)。位点特异性核酸内切酶、TALEN、ZFN 和 CRISPR/Cas9 是基因编辑工具箱的最新成员。TALEN 和 ZFN 需要工程蛋白,而 CRISPR/Cas9 是 RNA 引导的。CRISPR/Cas9 基因编辑需要 Cas9 mRNA 或蛋白和单向导 RNA (sgRNA),后者由反式激活 RNA 和 CRISPR RNA 组成。上述所有核酸内切酶都会在基因组中诱导位点特异性双链断裂 (DSB),这通常是
引言实体瘤是具有复杂组织的器官,该组织促进了肿瘤细胞生长,生存,侵袭和进化(1,2)。肿瘤器官由癌细胞,非癌性基质细胞(成纤维细胞,脂肪细胞,神经和内皮细胞以及驻留和浸润的免疫细胞)以及胞外矩阵(ECM)以及与相关的可溶性因子共同促进癌症的响应,对癌症的治疗,对3的效果进行了效果,并导致了3个效果,并导致了效果,并进行了效果,并进行了治疗,该疗法的效果为3. 4)。这些非癌基质细胞和非细胞成分统称为肿瘤微环境(TME)。TME的组成和行为取决于CAR细胞的遗传和表观遗传元素,这些元素通过与TME的双向通信进行协作以创建功能性癌组织。在这种癌性组织的背景下,抗治疗肿瘤是由于它们能够颠覆这种动态的能力,可以在治疗后依靠其持续的生存和再生(5,6)。这种肿瘤器官稳态允许发育抗药性,抗性免疫肿瘤。细胞毒性化疗已成功地用于治疗许多癌症。然而,耐药性和脱靶毒性仍然是主要挑战,这些挑战常常导致肿瘤复发和患者死亡率。这些挑战促使人们寻找具有较低耐药性倾向和较少脱靶毒性的患者特异性靶向治疗方法。量身定制的治疗策略与患者的肿瘤活检表型