微生物纳米技术,即微生物驱动的纳米生物技术,是微生物技术领域的一个新兴领域,它利用了生物技术过程。微生物的生物勘探可以生产大量不同的纳米级材料,例如有机纳米材料、金属及其氧化物纳米材料等。(Verma 等人,2022 年)。与化学、物理和物理化学方法等替代合成途径相比,微生物纳米工厂路线采用绿色简便的方法来生产生物纳米材料。微生物纳米材料具有功能化的生物活性基团,可在纳米级上提高稳定性和功能性。这些微生物纳米产品主要用作坚固的载体,用于完整地递送/利用生物活性成分,以用于从农业食品到制药行业的定制应用(Chamundeeswari 等人,2019 年)。微生物纳米材料已被用于净化环境有毒物质,通过生物催化将工业废水中产生的有害污染物降解为无害的副产品 ( Verma, 2017 ; Verma et al., 2020 )。因此,微生物纳米生物技术具有广泛的应用范围,构成了微生物纳米制造中一种经济高效的方法,并可能在不久的将来为社会带来巨大的利润。随着绿色纳米技术的出现,重金属和致病菌对可持续水产养殖业的影响可以降到最低。在这方面,Saad 等人利用枯草芽孢杆菌 AS12 开发了一种生产 77 纳米大小的硒纳米颗粒的有效方法。通过细菌介导的硒纳米粒子生物合成,富含功能性生物活性成分(即黄酮类化合物和次生代谢物)的细菌悬浮液提供了纳米粒子在形状和大小方面的稳定性。这些纳米粒子针对尼罗罗非鱼(Oreochromis niloticus)中两种重金属(Cd 和 Hg)的积累和致病细菌嗜水气单胞菌负荷进行了测试。进一步的作者建议,生物源硒纳米粒子可能非常适合用于污染水,以最大限度地减少致病微生物和重金属的副作用;从而提高水产养殖业的生产力。
摘要 某些细菌群的多重耐药性 (MDR) 与医院内感染 (HAI) 有关,这代表着全球传染病诊断和治疗方面日益严峻的挑战。它给全球医疗机构的卫生管理带来了大多数问题;这涉及到功效和有效性,从而破坏了世界卫生组织 (WHO) 等医疗机构在遏制新出现和重新出现的公共卫生重大疾病方面的努力。多重耐药性 (MDR) 是由于自古以来对抗生素的管理不当造成的,这种抗生素的不当使用,尤其是广谱抗生素的使用,导致了抗菌素耐药性细菌的出现和传播,从而导致在医疗机构环境中选择了高度耐药的细菌病原体。医院内感染,特别是由 MDR 细菌引起的感染,通常很难治疗,导致各种副作用,包括延长住院时间和增加治疗费用,从而影响人体的天然微生物群。同样,新型抗菌剂的开发也滞后,目前很少有新型抗菌剂在开发中。因此,寻找治疗院内感染的新方法可能有助于克服细菌病原体的多重耐药性挑战。目前,正在通过修改现有药物、使用新型金属复合物、抗菌肽和反义抗菌疗法来开发新型治疗剂,以找到解决院内致病菌多重耐药性的持久解决方案。关键词:抗菌药物、细菌、多重耐药、院内、耐药性。引言院内感染(医院内感染)也称为医院相关感染 (HAI),在世界范围内的死亡率中占较大比例,并且与住院时间延长和治疗费用大幅增加有关。根据欧洲疾病预防和控制中心 (ECDC) 的数据,欧洲急症医院和长期护理机构每年共发生 890 万例 HAI(Sursten 等人,2018 年)。感染风险较高的人群包括重症监护、外科、肿瘤科/血液科、烧伤科的患者以及接受器官移植的患者和新生儿(WHO,2018 年)。最常见的院内感染是导管相关尿路感染 (CAUTI)、手术部位感染 (SSI)、中心静脉导管相关血流感染 (CLABSI)、呼吸机相关肺炎 (VAP) 和艰难梭菌感染 (CDI)(Stygal 等人,2020 年)。细菌性院内感染的几种来源
蜂蜜是世界各地消费的天然健康产品。由于蜂蜜的营养价值以及在现代医学中的药用活性,其消费量正在不断增加[1,2]。然而,在养蜂业中,一些养蜂人使用抗生素对抗多种细菌性疾病。因此,可以在蜂蜜中检测到微量抗生素[3]。在蜂蜜、牛奶、鸡蛋、鱼或肉等各种样品中都发现了抗生素残留(如磺胺类药物)[4–7]。最近,已经开发出各种策略来有效分析蜂蜜中的 SA 残留[8,9]。磺胺 (SA) 残留分析是一个主要关注点,因为这些药物的存在可能是一个公共卫生问题。此外,它可能导致抗生素耐药性致病菌的产生[10]。适当测定蜂蜜中极低浓度的 SA 是一项真正的分析挑战。已经采用各种分析方法来分析蜂蜜样品中的 SA 残留[11]。鉴于蜂蜜作为纯天然产品存在此类风险,欧盟已禁止在农业中使用 SA 类抗生素。欧盟还设定了蜂蜜等动物食品中 SA 的 MRL [12]。以初始物质(SA 及其代谢物)的总和为基准,SA 必须低于采用最佳分析方法得出的 LOQ。土耳其法律当局已禁止在养蜂业中使用抗生素 [13]。尽管最初建议使用磺胺噻唑进行控制,但由于在使用数月后在蜂蜜中发现残留物,因此已禁止使用。由于 SA 含量过高会带来这些问题,因此对 SA 的定量分析是一个主要关注点,必须对其进行监测才能检测出食品(如蜂蜜)中是否存在 SA。因此,开发更灵敏、更先进的分析方法来测定如此低含量的 SA 残留至关重要。当今全球市场对食品安全和质量的关注度越来越高。因此,开发新的、先进的分析方法至关重要。对于食品组学而言,主要挑战之一是改进分子水平上有关有害化学物质作用的有限信息[14]。从这个意义上说,将现代分析方法与组学方法相结合,可以提供一种强有力的工具来应对检测食品中痕量潜在有害化学化合物的挑战[15]。LC-HRMS(高分辨率MS)是针对复杂基质进行靶向或非靶向(非靶向)筛选的最有力工具之一,因为该技术具有许多独特的优势,例如高分辨率、
终点已达到葛兰素史克公司 (LSE/NYSE: GSK) 今天宣布,美国食品药品监督管理局 (FDA) 已接受审查其五合一脑膜炎球菌 ABCWY (MenABCWY) 候选疫苗的生物制品许可申请 (BLA)。美国 FDA 对此申请作出监管决定的处方药使用者付费法案 (PDUFA) 行动日期为 2025 年 2 月 14 日。GSK 的五合一 MenABCWY 候选疫苗结合了其两种已得到充分认可且具有公认疗效和安全性的脑膜炎球菌疫苗的抗原成分,即 Bexsero(B 组脑膜炎球菌疫苗)和 Menveo(脑膜炎球菌 [A、C、Y 和 W-135 组] 寡糖白喉 CRM 197 结合疫苗)。 MenABCWY 组合疫苗将针对导致全球大多数侵袭性脑膜炎球菌病 (IMD) 病例的五种脑膜炎奈瑟菌 (Men A、B、C、W 和 Y)。1 将这些疫苗提供的保护结合到更少的注射中旨在减少注射次数,简化免疫接种。这有助于提高系列完成率和疫苗接种覆盖率,并有助于减轻 IMD 的总体负担,未接种疫苗的青少年特别容易感染和爆发疫情。2,3,4 IMD 是一种不可预测但严重的疾病,可能导致危及生命的并发症。5 尽管接受治疗,感染 IMD 的人中仍有六分之一的人会死亡,有时死亡时间短至 24 小时。6,7 五分之一的幸存者可能会遭受长期后果,例如脑损伤、截肢、听力丧失和神经系统问题。8 虽然任何人都可能感染 IMD,但十几岁和成年早期的人属于感染风险较高的群体。 9,10 在美国,尽管自 2015 年以来就已建议接种所有五种血清群的脑膜炎球菌疫苗,但由于接种时间表复杂,IMD 的年度免疫接种率总体上仍然很低。11 MenB 是美国青少年和年轻人中最常见的 IMD 致病菌群,占 2017 年至 2021 年美国该年龄组中 IMD 病例的一半以上。12 为了预防 MenB,该疫苗受美国疾病控制与预防中心共同临床决策建议的约束,只有不到 12% 的美国青少年接种了两剂必需的疫苗。 10 在 III 期临床试验 (NCT04502693) 中,MenABCWY 候选疫苗实现了所有主要终点,包括与一剂 GSK 的 A、C、Y 和 W 群脑膜炎球菌疫苗相比,免疫学不劣于一剂,以及与两剂 GSK 的 B 群脑膜炎球菌疫苗相比,对 110 种不同的 MenB 侵袭性菌株(占美国流通的 MenB 菌株的 95%)的免疫反应不劣于两剂。该疫苗耐受性良好,安全性与两种疫苗一致。13
历史上,传染病给人类带来了沉重的打击。历史一再警告我们,一种致命的病原体就能杀死数百万人。14 世纪席卷欧亚大陆的黑死病大流行夺走了多达 1 亿人的生命( Cohn,2008 ),1918 年的西班牙流感在不到 2 年的时间内夺走了 5000 多万人的生命( Taubenberger and Morens,2019 )。这种情况在 20 世纪开始发生变化,抗生素和疫苗这两项了不起的成就拯救了数亿人的生命,使他们免于致命感染。如果我们没有针对天花、黄热病、脊髓灰质炎和其他致命病原体的疫苗,难以想象会有多少人丧生。如果我们没有抗生素,外科病房会发生什么情况则令人难以想象。一个令人愉快的巧合是,导致这些巨大成功的工具和技术往往是由微生物本身提供的:抗生素是由细菌和真菌产生的,疫苗通常是减毒或灭活的微生物。同样令人着迷的是,包括病毒和细菌在内的微生物教会了我们分子语言,让我们理解生命最基本的过程,并启发我们开发强大的生物技术来预防和治疗各种危及生命的感染。现代健康科学的一个支柱是 DNA 生物学和重组 DNA 技术。正是细菌和病毒教会了我们 DNA 是遗传物质,以及 DNA 基因表达是如何执行和调控的。更值得庆幸的是,我们还从这些微生物那里获得了解码 DNA 序列和设计 DNA 克隆的分子工具。如今,下一代测序和元数据分析彻底改变了我们在诊断、预防和治疗层面管理传染病的方式。尽管取得了这些突破性的成就,但传染病仍然给公共卫生带来沉重的负担,每年造成 1000 万至 1500 万人死亡。为证明这一严重的全球影响,世界卫生组织 (WHO) 于 2019 年公布的全球十大健康威胁中有六项与传染病有关 (https://www.who.int/emergencies/ten-threats-to-global-health-in-2019)。这六大威胁包括全球流感大流行、抗生素耐药性、埃博拉和其他高威胁病原体、疫苗犹豫、登革热和艾滋病毒 (HIV)。这些传染性病原体和相关问题位列全球卫生挑战之首并非偶然。人类历史上经常发生流感疫情。我们根本无法从人类中根除流感病毒,部分原因是它们会从鸟类和其他动物的天然宿主偶尔传播给人类 (Olsen 等人,2006 年)。生产有效的季节性流感疫苗已经是一个挑战,这将是一项更加艰巨的任务,预测和准备应对不可预测但即将来临的流感大流行,这在目前并非不可能。几十年来,我们一直受益于抗生素的使用。然而,过度使用抗生素和其他不良医疗习惯加速了耐药细菌的出现。如果没有可持续的新抗生素渠道,也没有其他有效的细菌感染治疗方法,我们可能会死于多重耐药致病菌(也称为超级细菌)引起的感染。据美国疾病控制和预防中心报道,仅在美国,每年就有 35,000 人死于抗生素耐药性细菌感染。
摘要:本文旨在评估尼日利亚阿夸伊博姆州主要湿地(Nwaniba、Ibaka、Ibeno 和 Itu)的对虾(Macrobrachium vollenhovenii)鱼片中的微生物含量、物种特征和组成。使用标准微生物程序确定对虾鱼片中的微生物含量、物种特征和组成。研究结果显示,总异养细菌计数范围从 Ibeno 样本的 2.10 x 104cfu/g 到 Itu 样本的 7.30 x 104cfu/g。Itu 样本还记录了总异养真菌计数的最高值(3.5 x 104cfu/g)。共分离出 8 种细菌(金黄色葡萄球菌、白色葡萄球菌、产气肠杆菌、蜡状芽孢杆菌、大肠杆菌、藤黄微球菌、弗氏节杆菌和沙门氏菌)和 6 种真菌(热带念珠菌、黑曲霉、黄曲霉、土曲霉、粘毛霉和根霉)。细菌种类藤黄微球菌和弗氏节杆菌的出现频率为 100%,而真菌种类为热带念珠菌。这些湿地地区的虾样本中存在这些致病生物可能意味着对虾消费者的健康构成潜在威胁,尤其是当产品在食用前未煮熟或加工不当时。 DOI:https://dx.doi.org/10.4314/jasem.v27i11.37 开放获取政策:JASEM 发表的所有文章均为由 AJOL 提供支持的 PKP 下的开放获取文章。文章发表后立即在全球范围内提供。无需特殊许可即可重新使用 JASEM 发表的全部或部分文章,包括图版、图表和表格。版权政策:© 2023 作者。本文是一篇开放获取文章,根据知识共享署名 4.0 国际 (CC-BY-4.0) 许可的条款和条件分发。只要引用原始文章,即可重新使用文章的任何部分而无需许可。引用本文为:EFFIONG, M. U; ADEYEMI, AV (2023)。对尼日利亚阿夸伊博姆州主要湿地对虾(Macrobrachium vollenhovenii)鱼片的微生物负荷、物种特征和组成进行评估。 J. Appl. Sci. Environ. Manage. 27 (11) 2643-2649 日期:收到日期:2023 年 9 月 30 日;修订日期:2023 年 10 月 29 日;接受日期:2023 年 11 月 7 日 出版日期:2023 年 11 月 30 日 关键词:湿地、异养细菌计数、真菌计数、Macrobrachium vollenhovenii 世界各地海鲜中毒事件的不断增加凸显了微生物控制在渔业中的重要性。研究表明,微生物风险评估已成为评估食品和水供应安全的新兴工具(Effiong 和 Christopher,2020 年)。据报道,对虾携带可导致海传播疾病的病原体(Iwamoto 等人,2010 年)。据报道,其中一些致病菌(弧菌属、沙门氏菌属、链球菌属和葡萄球菌属)可导致人类出现各种健康问题(Lipp 和 Rose,2011 年)。尽管虾具有健康和营养价值,但它极易腐烂,肠道中可能寄生大量细菌
微生物学基础:临床方法 - 第三版 由 Johana Meléndez 教授等编写 医学微生物学简介,作者:Andrew Dodgson 博士 本书是了解医学微生物学的综合资源,涵盖了基本概念和临床方法。 关键概念包括: - 研究导致人类疾病的微生物(病毒、细菌、真菌和寄生虫) - 正常菌群:人体皮肤和粘膜上有益微生物的存在 - 污染:培养物中存在在采集样本时不存在的生物 - 定植:生物在某个部位存在但没有引起疾病或症状 - 感染:生物侵入身体部位、繁殖并引起组织反应、症状或疾病 将生物分类为界、门、属、种对于理解医学微生物学也至关重要。其中包括: - 病毒:体型小,无法独立复制,难以治疗(例如流感、艾滋病毒/艾滋病) - 细菌:能够独立复制,导致医院中见到的大多数感染,并用抗生素治疗 - 真菌:复杂、大型生物,也会导致疾病(例如肺炎、尿路感染) 了解这些概念对于医疗保健专业人员有效地诊断、预防和治疗感染至关重要。 细菌可分为真菌和霉菌,导致一系列疾病,例如鹅口疮、足癣、侵袭性和过敏性曲霉病。许多疾病都是机会性的。 对细菌进行分类至关重要,因为不同类型的细菌会导致不同的疾病,并且对抗生素有不同的反应。为了对细菌进行分类,我们根据它们的微观外观对它们进行分组,然后根据生化反应等特性进一步将它们分为不同种类。 革兰氏染色法通过使用结晶紫和其他化学物质对载玻片进行染色来帮助区分细菌。这种方法可以确定细菌是革兰氏阳性还是革兰氏阴性,这会影响其抗生素耐药性。革兰氏染色还提供有关细菌细胞壁形状的信息,将它们分为四个主要类别:G+ 杆菌、G+ 球菌、G- 杆菌和 G- 球菌。这种初步鉴定对于诊断疾病和选择适当的抗生素很有用。 微生物学是研究微生物(包括细菌、病毒、真菌和其他微观生命形式)的科学分支。医学微生物学领域专门研究人类传染病的原因和影响。 微生物分类 ----------------------------- 微生物分为几类: * **原生生物**:包括原生动物等单细胞生物的群体。 * **病毒**:此类包括病毒,它们是可导致人类传染病的非细胞生命系统。 * **DNA 病毒和 RNA 病毒**:病毒类别的子类别,以其遗传物质(DNA 或 RNA)区分。 * **真核生物**:包括单细胞真核生物(如藻类和原生动物)的群体。 * **原核生物**:此类别包括细菌,即没有细胞核的原核细胞。 * **真菌**:一类微生物,包括对人类有致病性的真菌。 * **蓝藻**:蓝藻的一个子类别。 * **藻类**:一组光合真核生物。 * **细菌**:此类包括革兰氏阴性细菌,其具有特征性的细胞壁结构,由外膜和含有胞壁酸的薄内肽聚糖层组成。 * **原生动物**:原生生物的一个子类别,包括对人类有致病性的单细胞动物生物。细菌类内的分类 --------------------------- -- 细菌类进一步分为三个亚类: 1. **暗细菌**:此类细菌的细胞壁为革兰氏阴性,由外膜和含有胞壁酸的薄内肽聚糖层组成。 2. **无氧光合细菌和有氧光合细菌**:暗细菌亚类的子类别。 微生物命名法 ------------------------------ 在微生物学中,使用二名法来识别物种。该系统为每种物种分配一个通用名称和一个特定名称。例如,*炭疽芽孢杆菌* 和 *破伤风梭菌* 分别是炭疽杆菌和破伤风杆菌的科学名称。 细菌的大小 ------------------ 细菌的大小通常以微米 (μm) 或毫米 (mm) 为单位。大多数致病菌的尺寸在 0.1 到 10 μm 之间。用于测量微生物的其他单位包括纳米和埃。 细菌的形态 ------------------------- 细菌是通过二分裂繁殖的原核细胞,二分裂是一种无性繁殖,细胞分成两个相同的子细胞。它们同时具有 DNA 和 RNA,可根据形状进行分类: 1. **球形(球菌)**:此类细菌呈球形。 2. **杆状(细菌、杆菌和梭菌)**:细菌类的子类别,包括长度不一的杆状体。 3. **螺旋形(弧菌、螺旋体、螺旋体)**:杆状细菌的一个子类别。 淋病奈瑟菌的电子显微照片 ---------------------------------------------- 电子显微照片是使用电子显微镜拍摄的高分辨率图像。这张显微照片显示的是*淋病奈瑟菌*的形态,它是一种导致淋病的致病菌。杆状细菌的排列 -------------------------------------- 杆状细菌可以排列成不同的形状,包括: 1. **单杆**:单个杆状细菌。 2. **链杆菌**:一种具有特征形状的杆状细菌。螺旋形式 ---------- ---- 弧菌是一种螺旋状的细菌,外观类似逗号。细菌有各种形式,包括霍乱弧菌和螺旋体,它们都是盘绕的形状。致病菌种如小螺旋体会导致鼠咬热,而幽门螺杆菌会导致胃溃疡。螺旋体是一类细菌,包括密螺旋体、钩端螺旋体和伯氏疏螺旋体,其特征是细胞薄而柔韧,有规则的扭曲。细胞壁对于细菌的刚性和渗透保护至关重要,由革兰氏阳性菌中的肽聚糖组成。所讨论的细菌不能运动,也没有荚膜,属于革兰氏阴性。它们对各种抗生素高度敏感,需要活细胞才能在其中繁殖。从形态上看,这些立克次体与某些细菌有相似之处,具有包围原生质物质和致密颗粒的限制膜。另一方面,衣原体也是革兰氏阴性菌,缺乏必要的能量产生机制,因此是细胞内寄生虫。它们表现出两种不同的形态:原生体和初始体。实验室诊断采用多种方法:1. 细菌镜检 2. 常规细菌学检测 3. 抗生素敏感性检测,以检测细菌对药物的反应 4. 血清学评估抗体存在 5. 生物技术,用于识别特定的生物过程 6. DNA 技术检测,如 PCR(聚合酶链反应),可检测各种生物体的 DNA 或 RNA,例如 HIV。血清学评估抗体的存在 5. 用于识别特定生物过程的生物技术 6. DNA 技术测试,如 PCR(聚合酶链反应),可检测来自各种生物体(例如 HIV)的 DNA 或 RNA。血清学评估抗体的存在 5. 用于识别特定生物过程的生物技术 6. DNA 技术测试,如 PCR(聚合酶链反应),可检测来自各种生物体(例如 HIV)的 DNA 或 RNA。
自史前时代以来,食品保鲜一直是人类社会的一个重要方面。干燥、冷藏和发酵等古代方法已经发展成为包括罐装、巴氏灭菌、冷冻、辐照和化学添加等现代技术。包装材料的进步也在现代食品保鲜中发挥了重要作用。食品腐败是指食品因各种因素(如微生物污染、昆虫侵染或酶降解)而变得不适合食用。物理和化学变化也会促进腐败。例如,植物或动物组织的撕裂或某些食物成分的氧化会导致腐败。从植物或动物获得的食物在收获或屠宰后不久就开始腐烂。收获后处理过程中的机械损伤会释放出分解细胞物质的酶,导致食品质量下降。细菌、酵母和霉菌等微生物是食品腐败和食源性疾病的主要原因。从收获到准备,食品生产的任何阶段都可能发生污染。微生物污染的主要来源包括土壤、空气、动物饲料和植物表面。细菌是单细胞生物,在最佳条件下繁殖迅速。影响细菌生长的因素包括营养物质的可用性、水分、pH 值、氧气水平以及抑制物质的存在与否。了解这些因素对于有效保存食品和最大程度降低腐败风险至关重要。铁是细菌通过利用大气气体和代谢碳水化合物和蛋白质等食物成分而获得的一种必需元素。####温度和 pH 控制生长温度和 pH 值会显著影响细菌的生长速度。根据细菌的最佳温度范围,细菌可分为三类:嗜热菌、中温菌和嗜冷菌。####最佳环境条件细菌在 pH 值为 7 的中性环境中茁壮成长,需要一定量的可用水才能生长,以水活度比来衡量。####水活度和生长控制水活度定义为食品中水的蒸气压除以特定温度下纯水的蒸气压。大多数细菌无法在低于 0.91 的水活度阈值下生长,尽管一些嗜盐菌种可以耐受更低的值。#### 生长参数细菌生长受多种因素影响,包括氧气浓度,专性需氧菌需要自由氧,专性厌氧菌会因氧气的存在而中毒。#### 细菌种群动态细菌种群的生长遵循可预测的模式,包括滞后期、对数期、稳定期和衰退期。种群的大小通常按每克或每平方厘米的表面积来衡量。食品保鲜旨在改变食品的内部和外部条件和成分,以延长其保质期并防止变质。每克含有 107 到 108 个细胞的食品会产生异味,而每克含有 5 × 10^7 个细胞以上的食品通常会出现某种形式的腐败。某些细菌可以产生对热、化学物质、干燥和紫外线具有高度抵抗力的内生孢子,保持休眠状态,直到有利条件允许它们发芽和生长。食品保鲜方法有助于延长保质期,因为它可以减缓或停止微生物的生长,同时保持清洁和消毒的条件以防止污染。各种技术,包括冷冻、脱水、罐装、发酵等,都会影响食物的内部和外部条件。目标是创造不利于腐败生物的条件,确保食品安全。有效的保存依赖于适当的卫生条件、温度监测和正确的加工时间。烹饪、冷藏和腌制等简单的厨房操作也可以被视为保鲜方法。然而,如果没有适当的卫生条件,即使是严格的保存方法也会对消费者造成伤害。FoodDocs 的软件有助于简化食品安全管理,而清晰地了解保存技术对于成功的结果至关重要。食品保存是食品工业中一个至关重要的过程,旨在减缓腐败生物并延长保质期。采用各种方法,从工业过程到烹饪、冷冻和冷藏等小规模操作。这些技术改变了食物的外部或内部条件,使其不利于微生物的生长。一些方法涉及加热、脱水或改变 pH 值或酸度。大约公元前 12,000 年,罗马人等古代文明使用一种称为“蒸馏室”的技术,利用火的热量和烟雾来干燥水果、草药和蔬菜。这种早期的食品保存方法涉及通过各种方式进行脱水,例如使用盐或香料来增强脱水过程。发酵的概念后来被路易斯·巴斯德于 1857 年理解,但有证据表明它已经实践了数千年。大约公元前 7000 年,新石器时代的中国就记录了饮料的发酵过程。保存方法旨在延长保质期,防止食物变质,同时保证安全。无论采用何种原理,保存都能保护食物免受微生物生长的影响,从而延长其保质期。食品保存的重要性在于它对食品行业的可持续性和供应做出了贡献。它确保即使在收获季节过去也有稳定的食品供应,通过减少浪费来支持经济增长,通过发酵等过程增强风味,并使用冷冻干燥等现代方法保留原有特性。食品保鲜涉及一个不采用加热等苛刻方法的过程,因为加热会改变食品的特性。这种方法可以安全地储存和长期使用食品,并保持其最佳风味。此外,它还能保留关键的健康益处和活性化合物,如抗氧化剂和抗菌特性。另一个优点是易于处理食品,因为保鲜产品保质期长,且不易受外部污染。一些保鲜方法还可以减轻产品重量,使其更节省储存空间。食品保鲜可以延长产品的保质期,通过全年保持季节性农产品新鲜来减少浪费。此外,多余的食材可以保存下来,用于其他菜肴。食品保鲜创造的条件不利于致病菌生长,确保消费者的安全。对于企业来说,保鲜食品可以改善消费者的感知并优化运营。食品保鲜除了促进微生物生长外,还可以实现以下所有目标,因为其主要目标是防止细菌生长。影响保鲜的因素包括产品的内部或外部成分。通过操纵这些因素,可以减缓或停止细菌和其他致病生物的生长。影响保存方法的关键因素是 pH 值,大多数病原体无法在酸性条件下生存。温度在保存食物方面起着至关重要的作用,不同的温度会导致不同的保存效果。罐装和巴氏灭菌等方法利用高温来消灭病原体,而干燥和脱水也依靠热量来限制微生物对水分的利用。在温度范围的另一端,低温保存技术(如冷藏和冷冻干燥)旨在减缓或停止微生物的生长。水活性是食品保存的一个关键方面,因为大多数细菌和病原体都需要水才能生长。为了解决这个问题,脱水或通过成分结合水等方法可以有效地限制病原体的生长。此外,通过改良的气氛包装或真空密封控制氧气水平可以在某些情况下防止腐败微生物的生长。光照也会导致腐臭和氧化等问题,但使用琥珀色瓶等专用容器可以减轻这些影响。发酵是另一种保存方法,它利用有益微生物产生理想的风味,同时通过产生酸性条件来抑制病原体的生长。最后,使用合适的容器是一种简单而有效的方法,可以排除外部因素对食品质量的影响。食品处理人员可以结合多种保存方法,以确保食品在较长时间内保持安全。当保护能力得到扩展时,保存方法可以产生显著的效果。在工作条件下保持清洁和卫生水平对于保护食品免受食源性病原体的侵害至关重要。例如,如果需要保存鲜肉,则需要强大的食品安全管理系统来确保符合法规。FoodDocs 提供直观的数字解决方案,帮助保持合规性并从食品保存中获益。利用数字食品安全监控系统可以自动生成监控日志、智能通知和实时仪表板,以提高合规性和运营效率。食品保存包括各种操作,这些操作根据预期用途、所需特性和储存条件生产独特的产品。常见的原理包括针对消除腐败细菌的高温方法、减缓病原微生物生长的低温方法、冻干去除水分、利用有益微生物发酵、添加抑制微生物生长的防腐剂、改良气调包装和使用电离辐射的食品辐照。最广泛使用的食品保存方法是加热和低温工艺。加热可通过干燥、脱水以及液体食品的巴氏灭菌等方法灵活地处理固体和液体食品。控制加热是消灭有害细菌而不损害食品质量的关键。在这些过程中持续监测内部温度可确保有效性。食品保鲜方法侧重于延长保质期和保持质量,低温技术(如冷藏和冷冻)被广泛使用。这些方法减缓细菌生长,确保食品长期安全食用。然而,极端温度会改变风味和质地。新技术旨在在不损害食品原有特性的情况下保存食品。冷冻干燥是一种非常有效的方法,通过冻干去除水分来保留颜色、风味和质地。该过程还可以保留生物活性化合物,增强人体健康益处。其他现代方法包括高压处理和振荡电场,与热处理相比,它们可以最大限度地减少质地变化。在食品保鲜过程中,会添加化学品来强化工艺或产生更快的反应,并遵守严格的食品安全法,确保批准的化学品不会对健康造成不利影响。常用的防腐剂包括盐、糖、柠檬酸和乳酸等有机酸、亚硝酸盐、亚硫酸盐、香料中的精油、酒精、丁羟茴醚 (BHA)、苯甲酸酯等。这些化学品经过严格的审批程序,以保证消费者的安全。目标是找到能够有效延长保质期同时保持食品品质和特性的保存方法。正确的保存方法对于保持食品品质的重要性怎么强调也不为过。用于此过程的化学品既可以来自合成来源,也可以来自天然物质。必须注意的是,保存技术需要特定条件才能有效,并且这些要求因所选方法而异。不幸的是,保存过程中经常会犯一些错误,如果操作不当,可能会导致污染和无效。其中一些错误包括: * 未能正确消毒环境和所用材料 * 保存温度控制不足 * 食品处理人员的卫生习惯不良 * 保存产品的储存不当 * 添加的防腐剂量不足 * 使用变质的原材料,这可能对某些方法有害 * 包装材料损坏 为了确保食品保存过程的成功和安全,在加工前、加工中和加工后保持一致的温度至关重要。此外,在整个操作过程中应实施适当的卫生和卫生习惯。有效食品保存的具体技巧:1. 在整个保存过程中保持一致的温度。2. 确保正确的加工时间,以防止加工不足或过度加工。3. 在用于保存食品之前对所有工具和设备进行消毒。4. 查阅已建立的文献和食品安全法规,了解批准的防腐剂含量。5. 使用信誉良好的容器。6. 检查原材料是否有任何变质迹象,因为这会影响保存方法的有效性。7. 标记保存食品的明确保质期,以准确监控其保质期。8. 将保存的食品存放在指定区域,避免与同一货架上的生食交叉污染。通过遵循这些准则并坚持正确的食品安全和卫生做法,企业可以成功保存食品成分,同时最大限度地降低污染或细菌生长的风险。这确保最终产品在延长的保质期内保持安全食用。食品安全管理可能非常繁琐,但用户友好的解决方案对于高效完成任务是必不可少的。 FoodDocs 提供直观的数字 Foos 安全管理系统,帮助保持合规性并简化运营。该系统提供基本功能,例如根据运营需求自动生成的监控表格,包括巴氏灭菌方法的烹饪温度日志、主卫生计划、员工卫生检查表和可追溯性跟踪。带有智能通知系统的移动应用程序可确保食品处理人员保持正轨,而数字解决方案只需要最少的设置时间,只需回答几个问题即可开始使用。人工智能和机器学习功能会自动生成监控日志和文档,实时仪表板会提供操作和产品可追溯性状态的概览。 可以随时同时管理食品保鲜过程和安全操作。确保符合食品安全要求,保护您的消费者免受食源性疾病的侵害。 通过 14 天免费试用体验我们数字解决方案的优势,加入通过我们的产品实施食品安全的 30,000 多名客户。 常见问题: 需要更多有关食品保鲜的信息吗?以下是有关此主题的一些最常见问题: 什么是食品保鲜? 食品保鲜通过防止腐败生物生长来延长食材的保质期。它旨在更长时间地保留营养价值、风味和安全性。 食品保鲜的 7 种方法是什么? • 加热(干燥、巴氏杀菌) • 腌制(盐、糖或蜂蜜腌制) • 冷冻 • 真空包装 • 罐装 • 烟熏 • 自由干燥 什么是天然防腐剂?例如盐、糖、蜂蜜、香料、醋和其他有机酸。为什么醋可用于食品保鲜?醋可降低食品的 pH 值,从而抑制细菌生长。它含有 pH 值较低的乙酸。我们如何保存食物?食品保鲜涉及多种操作,包括冷冻、热处理或高压加工,以使食品具有保质性。哪种保鲜方法会留下一些不会在食品中繁殖的细菌孢子?商业灭菌就是这种方法的一个例子,它针对营养细胞,但采用不太极端的温度来破坏孢子。哪种方法通过控制微生物与水的接触来保存食物?干燥和固化等方法可控制微生物与水的接触。干燥通过加热去除可用水,而固化将可用水与溶质结合。并确保更长时间的安全性。 食品保鲜的 7 种方法是什么? • 加热(干燥、巴氏灭菌) • 腌制(盐、糖或蜂蜜腌制) • 冷冻 • 真空包装 • 罐装 • 烟熏 • 自由干燥 什么是天然防腐剂? 例如盐、糖、蜂蜜、香料、醋和其他有机酸。 为什么醋用于食品保鲜? 醋会降低食品的 PH 值,防止细菌生长。 它含有乙酸,乙酸的 PH 值较低。 我们如何保存食物? 食品保鲜涉及各种操作,包括冷冻、热处理或高压加工,以使食品保质期长。 哪种保鲜方法会留下一些不会在食物供应中繁殖的细菌孢子? 商业灭菌就是这种方法的一个例子,它针对营养细胞,但应用不太极端的温度来破坏孢子。 哪种方法通过控制微生物与水的接触来保存食物? 干燥和腌制等方法可以控制微生物与水的接触。干燥通过热量去除可用水,而固化将可用水与溶质结合在一起。并确保更长时间的安全性。 食品保鲜的 7 种方法是什么? • 加热(干燥、巴氏灭菌) • 腌制(盐、糖或蜂蜜腌制) • 冷冻 • 真空包装 • 罐装 • 烟熏 • 自由干燥 什么是天然防腐剂? 例如盐、糖、蜂蜜、香料、醋和其他有机酸。 为什么醋用于食品保鲜? 醋会降低食品的 PH 值,防止细菌生长。 它含有乙酸,乙酸的 PH 值较低。 我们如何保存食物? 食品保鲜涉及各种操作,包括冷冻、热处理或高压加工,以使食品保质期长。 哪种保鲜方法会留下一些不会在食物供应中繁殖的细菌孢子? 商业灭菌就是这种方法的一个例子,它针对营养细胞,但应用不太极端的温度来破坏孢子。 哪种方法通过控制微生物与水的接触来保存食物? 干燥和腌制等方法可以控制微生物与水的接触。干燥通过热量去除可用水,而固化将可用水与溶质结合在一起。