保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。
较新的定量方法可以辅助临床上使用的传统定性方法,并减轻无益的人为偏见。使用定量技术,癫痫患者可能通过不同的方式检测到异常,包括 MRI、5 – 8 EEG、9 – 11 MEG、12、13 和弥散加权 MRI (dMRI)。14 – 18 这些异常的数量、程度和位置已被证明与手术结果有关。10、11、19 – 21 此外,不同的方式可以提供互补的信息,因此多模态分析可以比单一方式有所改进。22 因此,结合多种方式的定量方法可能能够提高我们对癫痫发作、癫痫和手术失败原因的理解。大脑活动的电记录长期以来一直被用来识别与癫痫发作有关的大脑区域。这种识别通常涉及从发作数据中定位癫痫发作区域。最近,人们使用发作间期 iEEG 记录创建了健康大脑活动的常态图。10、11、23 这些图可以通过将每个患者与常态图进行比较来识别个体患者的异常情况。假设异常可能
约三分之一的癫痫对药物有抵抗力。对于这些患者,可以通过手术切除致痫区 (EZ)(大脑中引起癫痫发作的部分)来减少或治愈癫痫发作。如果非侵入性数据不足以确定侧向或定位,则可能需要通过精确植入颅内脑电图 (iEEG) 电极来定位致痫区。iEEG 目标的选择受到临床医生的经验和对文献的个人了解的影响,这导致不同癫痫中心的植入策略存在很大差异。基于文献中报告的回顾性临床病例的结果,客观工具可以建议致痫区的位置,从而支持和标准化手术计划的临床诊断途径。我们提出了一个开源软件工具,为临床医生提供直观的数据驱动可视化,以推断可能与致痫区重叠的致病区的位置。可能的 EZ 表示为覆盖在患者图像上的概率图,给出在该特定患者中观察到的癫痫症状列表。我们展示了一个案例研究,该研究基于我们单位接受治疗的一名患者的回顾性数据,该患者接受了切除性癫痫手术,并在术后 1 年内没有癫痫发作。被识别为 EZ 位置的切除脑结构与我们工具突出显示的区域重叠,证明了其潜在效用。