本书是一本关于航空航天材料的教材,源自 1998 年 9 月 22 日至 25 日在神户研究所举行的第一届牛津-神户材料研讨会上的演讲。神户研究所是一个独立的非营利性组织。它由兵库县神户市和日本各地 100 多家公司的捐款建立。它位于日本神户市,与英国牛津大学圣凯瑟琳学院合作运营。英国神户研究所委员会主席是圣凯瑟琳学院院长 Peter Williams 爵士;神户研究所董事会董事是 Yasutomi Nishizuka 博士;学术主任是牛津大学的 Helen Mardon 博士;财务主管是 Kaizaburo Saito 博士。神户研究所成立的目的是促进教育和研究,促进日本与其他国家之间的相互了解,并为学术界和工业界伙伴之间的合作与交流做出贡献。牛津-神户研讨会是旨在促进英国/欧洲和日本之间国际学术交流的研究研讨会。研讨会的一个主要特点是提供一个世界级的论坛,重点是加强日本和英国/欧洲学术界与工业界之间的联系,并促进对共同感兴趣的及时问题的合作研究。第一次牛津-神户材料研讨会的主题是航空航天材料,重点关注未来 10 年科学和技术的发展。研讨会的联合主席包括东北大学的井上章久教授、牛津大学的 Brian Cantor 教授、Hazel Assender 博士和 Patrick Grant 博士以及神户研究所的斋藤开三郎博士。研讨会协调员是牛津大学的 Pippa Gordon 女士。研讨会由神户研究所、圣凯瑟琳学院、牛津先进材料和复合材料中心、ONERA、道蒂航空螺旋桨公司、石川岛播磨重工业和神户制钢所赞助。研讨会结束后,所有发言者
量子计算是一种改变游戏规则的技术,有望彻底改变我们所知的计算世界。传统计算机可使用二进制数字,称为位,可以是0或1。但是,量子计算机使用量子位或量子位,可以同时存在于多个状态。Qubits的这种属性使量子计算机比经典计算机更快地执行某些计算,这使它们非常适合解决加密,药物发现和人工智能等领域中的复杂问题。RSA算法是一种广泛使用且可信赖的加密方法,依赖于考虑大型复合数的难度。但是,量子计算机可以损害RSA的安全性,量子计算机可以使用SHOR的算法有效地考虑此类数字。为了解决这个问题,对使用量子计算技术实施RSA的兴趣越来越多,这可以为量子攻击提供额外的安全层。
本文所述产品(以下简称“产品”)的销售须遵守 Huntsman Advanced Materials LLC 或其适当附属公司(包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc.、Huntsman Advanced Materials (Hong Kong) Ltd. 或 Huntsman Advanced Materials (Guangdong) Ltd.(以下简称“Huntsman”))的一般销售条款和条件。以下内容取代买方的文件。尽管据亨斯迈所知,本出版物中的信息和建议在出版之日是准确的,但本文所含内容不得理解为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前说明或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。本文所述的任何声明或建议均不得解释为任何产品适合买方或用户特定用途的陈述或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方负责确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。
1.介绍NRC概述结构和材料绩效航空航天生产2.传统材料研究方法3.次要生成材料研究方法EX1:使用AI/ML的材料设计EX2:加速材料测试ex3:Ex3:Ex3:EX -EX型数字制造方法4. Accelted Manduct and Imaltes Structures&Meality aerospace组型型型型组型型型型型组型型组型组型组型组型组型。
学期末评估 (SEE):实践课程的 SEE 分数为 50 分。SEE 将由同一学院的两名考官联合进行,考官由大学任命。所有实验室实验都将包括在实践考试中。(评分标准) 考官必须严格遵守分数的划分和答题纸封面上印刷的说明。或根据课程要求,评估标准应由考官共同决定。学生可以从内部/外部考官共同准备的大量问题中挑选一个问题(实验)。考试记录/进行程序和结果/口试的评估将由考官共同进行。这里提到了针对 SEE 建议的一般评分标准,书面作业-20%,执行程序和结果-60%,口头答辩占最高分的 20%。实践 SEE 应按 100 分进行评估,评分应缩减为 50 分(但根据课程类型,评分标准应由考官决定)
法律信息 提及的所有商标均为亨斯迈公司或其关联公司在一个或多个(但不是所有)国家/地区的财产或已获授权。本文所述产品(以下简称“产品”)的销售须遵守亨斯迈先进材料有限责任公司或其适当关联公司的一般销售条款和条件,包括但不限于亨斯迈先进材料(欧洲)有限公司、亨斯迈先进材料美洲公司、亨斯迈先进材料(香港)有限公司或亨斯迈先进材料(广东)有限公司(以下简称“亨斯迈”)。以下内容取代买方文件。尽管据亨斯迈所知,本出版物中的信息和建议在出版之日是准确的,但本出版物中包含的任何内容均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。本文所述的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述,或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。买方应 (i) 从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序;(ii) 采取一切必要措施,充分告知、警告可能处理或接触产品的员工、代理、直接和间接客户和承包商,并使其熟悉与产品有关的所有危害以及安全处理、使用、储存、运输和处置以及接触产品的正确程序;(iii) 遵守并确保可能处理或接触产品的员工、代理、直接和间接客户和承包商遵守适用的材料安全数据表、技术数据表或亨斯迈提供的其他说明中包含的所有安全信息,以及与产品的处理、使用、储存、分销和处置及接触有关的所有适用法律、法规和标准。请注意,产品可能因国家/地区而异。如有任何疑问,请联系您当地的亨斯迈代表。
NASA STI 项目办公室由兰利研究中心运营,该中心是 NASA 科学和技术信息的牵头中心。 NASA STI 项目办公室提供对 NASA STI 数据库的访问,该数据库是世界上最大的航空和空间科学 STI 集合。该项目办公室也是 NASA 传播其研究和开发活动结果的机构机制。这些结果由 NASA 在 NASA STI 报告系列中发布,其中包括以下报告类型:
我们已进入一个新时代,私营企业太空探索和商业航天飞行正逐渐成为现实。随着对运载火箭和轨道飞行器投资的增加,对行业领先的分析测试的需求也日益增长,以确保下一代太空探索的可靠性和安全性。此外,下一代更轻、更坚固的航空航天材料也对纯度和可靠性的控制提出了挑战。EAG 凭借先进的分析工具和成熟的方法,能够支持从研发到故障分析的所有航空航天材料测试。
航空航天材料大致可分为四类:金属材料 (metallics)、非金属或聚合物材料、复合材料 (composites) 和陶瓷材料 (ceramics)。本章给出了这些类别材料的示例。从历史上看,飞机使用的是当时最好的材料。莱特兄弟在飞机中使用铝合金使其更轻(与钢相比),以便它们更容易飞行。还使用了木材和织物等轻质非金属材料。在过去的一百年里,所有类别的航空航天材料都在不断改进。碳纤维增强复合材料于大约六十年前问世,与其他材料相比,由于其重量更轻、强度更高,因此如今它们的使用变得更加普遍。
9. 了解航空航天材料 10. 航空航天结构用铝合金和镁合金 11. 航空航天结构和发动机用钛合金 12. 燃气涡轮发动机用高温合金 13. 材料降解