初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、
有关数字创新的信息。后半部分解释了研究中使用的方法、数据解释,然后得出结论。这项研究将有利于其他研究人员更详细地研究和调查有关后新冠疫情航空公司和航空业创新的相关工作。由于新冠疫情尚未消失,时间可能会影响研究结果。因此,研究人员可以将这项研究作为安排进一步研究概念的基本组成部分。其次,这项研究将使低成本航空公司受益,特别是在指导后新冠疫情更好的准备方面。低成本航空公司可以利用这项研究与公司政策相结合,找到最佳策略和准备,以生存并满足员工的期望。关键词:创新、期望、新冠疫情、航空业
摘要:驾驶舱监控不力已被确定为导致航空事故的重要因素。因此,改进飞行员的监控策略有助于提高飞行安全性。在两个不同的环节中,我们在全飞行模拟器中分析了专业航空公司飞行员的飞行性能和眼球运动。在预训练环节中,20 名飞行员以飞行员飞行 (PF) 的身份执行了手动进近场景,并根据其飞行性能分为三组:不稳定、标准和最准确。不稳定的飞行员对各种仪器的关注不足或过度。他们的视觉扫描模式数量低于设法稳定进近的飞行员。最准确的飞行员表现出更高的感知效率,注视时间更短,对重要主要飞行仪表的注视更多。大约 10 个月后,14 名飞行员返回进行后续训练。他们接受了一项短期培训计划,并执行了与预训练课程类似的手动方法。其中七人(实验组)收到了关于他们自己的表现和视觉行为(即在预训练课程期间)的个人反馈,以及从最准确的飞行员那里获得的各种数据,包括一段眼动追踪视频,其中显示了最准确的飞行员之一的有效视觉扫描策略。另外七人(对照组)收到了有关驾驶舱监控的一般指导。在训练后阶段,实验组的飞行表现更好(与对照组相比),其视觉扫描策略与最准确的飞行员的视觉扫描策略更加相似。总之,我们的结果表明,驾驶舱监控是手动飞行性能的基础,并且可以使用主要基于高度准确的飞行员的眼动示例的训练计划来改进它。
Aero Missile Components South 101 Moore St., Ste.D Oxford, AL 36203 256-831-1275 aeromissile.com 3 军用和航空航天紧固件及部件经销商,如螺栓、螺母、螺丝、垫圈、铆钉、销钉和军用车辆、直升机、飞机和大型武器系统所需的许多其他部件;SPS Technologies 授权经销商/Flexloc 总经销商
此外,所提议的方法是航空业内部开发的。这涉及将该方法的根源应用于美国航空公司和沙特阿拉伯航空公司的主要 BPR 项目。因此,所提议的 BPR 方法具有在航空业内部发展和测试的特点,这增加了任何商业航空公司成功实施该方法的可能性。事实上,这项研究为沙特阿拉伯航空公司内部 BPR 计划的开发和成功做出了巨大贡献,并产生了许多切实的利益。提供了有关支持和促进所提议的 BPR 方法实施所需的一些关键工具和技术的进一步工作建议。
-79.2% -75.7% -67.9% -63.1% -57.4% -55.2% -46.1% -49.1% -50.7% -47.8% -45.1% -40.3% 非洲 亚洲
长时间坐着时,无论座椅有多好,乘客的不适感都会增加(Mansfield 等人2020)。座椅轮廓、座椅底板角度、靠背角度、腰部支撑和颈部支撑以及泡沫的改进有助于最大限度地提高舒适度(Vink,2016 年)。但是,不适感无论如何都会随着时间的推移而增加(例如Sammonds 等人,2017 年),即使是在商务舱乘客座位上(Smulders 等人,2016 年)。有迹象表明,无症状工人的高水平肌肉骨骼不适可能会在长期内发展为肌肉骨骼疼痛(Hamberg 等人,2008 年)。例如,如果工人日复一日的 LPD(局部姿势不适)累积评分超过 3,那么三年后他们颈部受伤的风险就会增加(RR 2.35),这意味着比“正常”人群高出 2.35 倍。坐了几个小时后,大多数司机和乘客都需要休息一下,走动一下以缓解压力(Mansfield 等人2020 年)。但是,对于司机和航空公司飞行员等职业来说,站起来走动通常是不可能的。这种长时间的坐姿可能会给航空公司飞行员带来麻烦。但是,关于不适感增加以及短途和长途飞行中不适感如何发展的数据并不多。这些数据可用于重新设计驾驶舱和座椅。本研究研究了不适的程度和位置。
16.摘要 人们对将无人机系统 (UAS) 用于商业运营的兴趣日益浓厚。《联邦航空法规》第 14 章 (14 CFR) 第 121 和 135 部分未考虑航空公司使用小型 UAS (sUAS) 的运营,而第 107 部分规定了 sUAS 的最大重量限制。除非直接参与军事行动或获得联邦航空管理局 (FAA) 的豁免,否则不允许超过此重量限制的 UAS 进行民用运营。本文献综述和带注释的参考书目旨在整合和集中值班时间、轮班工作和疲劳文献,以便为航空公司运营中有关 UAS 运营商的未来政策和法规提供信息。它涵盖了 1990 年至 2019 年期间与无人和载人操作相关的值班时间、轮班工作、疲劳和疲劳风险管理方面的一系列文献。还讨论了可能影响操作员疲劳体验的人为因素 (HF) 和人体工程学考虑因素。搜索的文章来自 PsychINFO、Google Scholar 和 FAA 技术图书馆数据库,使用与无人和航空公司运营和疲劳相关的关键字。此外,使用 Google Scholar“引用”功能进行正向搜索有助于确定与该主题相关的其他文献。一百零五篇文章(59 篇文献综述/组织指南,46 项实证研究)讨论了无人和载人操作中的值班时间、轮班工作和疲劳。相关带注释的参考书目将研究文献分为三个主要部分(无人机系统、载人操作和美国军事飞行员执勤时间规定),并附有相关小标题。在载人操作中,执勤时间、轮班工作和疲劳问题已得到广泛研究,但在无人操作中研究较少。UAS 中的执勤时间、轮班工作和疲劳问题主要在军事航空和海上操作中进行研究,而这两类操作之外的研究则更普遍地关注人类如何与无人系统互动。这凸显了在 UAS 操作中进一步研究执勤时间、轮班工作和疲劳的必要性,以及需要进一步考虑 UAS 定义和分类标准以及 UAS 融入国家空域系统 (NAS),以最大限度地降低风险并最大限度地提高人员和财产的运营安全性。此项研究任务与更广泛的研究组合一起提供,以支持 FAA 为制定未来 UAS 航空公司运营中值班时间、轮班工作和疲劳方面的政策和法规所做的努力。
将无人机系统 (UAS) 整合到国家空域系统 (NAS) 需要彻底了解 UAS 操作所需的知识、技能、能力和其他特性 (KSAO)。随着 UAS 操作超出《联邦法规法典》第 14 章 (14 CFR) 第 107 部分的范围,联邦航空管理局 (FAA) 越来越需要标准化飞行员要求、认证要求以及测试和培训要求,特别是对于航空公司和商业运营。第 107 部分未涉及航空公司运营;现有的航空公司规则(见 14 CFR 第 121 和 135 部分)在制定时并未考虑到 UAS。目前,我们对各种 UAS 操作所需的最低知识、技能和测试的理解存在差距,这对 FAA 规则制定构成了挑战。本带注释的参考书目旨在通过基于研究文献的审查记录无人机操作飞行员的知识、技能和测试要求来弥补这一差距。本注释书目将支持 FAA 飞行标准服务通用航空和商业部门 (AFS- 800) 为 UAS 人员上空飞行、扩展飞行和非隔离飞行制定规则,以及航空运输部门 (AFS-200) 为制定 UAS 航空公司监管要求制定规则。文章收集自 Google Scholar 和 FAA Technical L
洛克希德·马丁航空公司是洛克希德·马丁公司的主要子公司,也是 F-35 闪电 II、C-130J 超级大力神和 F-16 战斗隼等军用飞机的制造商,在先进技术领域不断突破极限。