随着大型系统集成化、智能化程度的提高,其任务过程及系统内交互越来越复杂,人员不安全行为、设备故障、环境干扰等多因素间的复杂相互作用使安全性分析面临更大挑战。针对舰载机安全性,提出一种基于系统建模语言(SysML)与Simulink的舰载机着舰过程一体化系统建模与安全性分析方法。首先,根据任务过程分析,采用多种示意图构建SysML模型,包括系统结构和行为过程;其次,将SysML模型转化为Simulink平台并与之集成,构建具有连续动态特性的实体模型,通过仿真进行安全性分析;最后,以舰载机着舰姿态控制为例,对所提方法进行验证,并在不同扰动条件下对舰载机着舰过程的安全状态进行分析与评估。
特色应用:不同任务中舰载机保障作业的动态调度研究涉及多种保障资源(可再生资源包括保障作业人员和保障设备,不可再生资源包括油料、氧气、氮气、液压、电力等),作业活动需满足串行和并行约束关系,多重约束(可再生资源约束、不可再生资源约束、作业空间约束)等复杂的调度过程。这些资源的有效协调可以描述为不确定环境下的多资源约束多项目调度问题(MRCMPSP)。本文建立了舰载机动态保障调度的整数规划数学模型,解决了非确定性多项式时间难(NP-hard)问题。针对不确定、动态的环境,受到预测控制技术中的滚动时域(RH)优化方法的启发,提出了一种周期性、事件驱动的滚动时域(RH)调度策略。 RH策略不仅降低了问题规模,而且在合理的计算时间内有效地调整了基线调度,避免了在动态飞行甲板环境下不必要的调度,实现了资源的有效分配。设计了双种群遗传算法(DPGA)来解决大规模调度问题。计算结果
特色应用:不同任务中舰载机保障作业的动态调度研究涉及多种保障资源(可再生资源包括保障作业人员和保障设备,不可再生资源包括油料、氧气、氮气、液压、电力等),作业活动需满足串行和并行约束关系,多重约束(可再生资源约束、不可再生资源约束、作业空间约束)等复杂的调度过程。这些资源的有效协调可以描述为不确定环境下的多资源约束多项目调度问题(MRCMPSP)。本文建立了舰载机动态保障调度的整数规划数学模型,解决了非确定性多项式时间难(NP-hard)问题。针对不确定、动态的环境,受到预测控制技术中的滚动时域(RH)优化方法的启发,提出了一种周期性、事件驱动的滚动时域(RH)调度策略。 RH策略不仅降低了问题规模,而且在合理的计算时间内有效地调整了基线调度,避免了在动态飞行甲板环境下不必要的调度,实现了资源的有效分配。设计了双种群遗传算法(DPGA)来解决大规模调度问题。计算结果
如何自主规划出协同运动轨迹并及时准确地控制舰载机的运动是提升整体甲板作业效率的关键。本文主要讨论的问题是多舰载机协调轨迹规划策略及牵引机与舰载机的协同控制。首先,建立无拖杆牵引系统运动学模型和三自由度动力学模型;其次,提出一种飞机系统协同进化机制以确保多飞机协调轨迹规划并基于混合RRT∗算法生成适应于牵引机系统的轨迹;其次,在不完全约束和各种物理条件约束下,设计双层闭环控制器实现甲板上牵引机系统的轨迹跟踪。外层模型预测控制器有效控制载机与牵引车的协同运动,内层基于自适应模糊PID控制的力矩控制策略严格保证系统的稳定性。仿真结果表明,与反步控制和LQR算法相比,该控制器具有更快、更精确的控制速度,对有初始偏差的直线轨迹、大曲率正弦曲线、甲板上的复杂轨迹具有更强的鲁棒性。
摘要 .舰载机维修与服务保障(MSSCA)是一个涉及多种资源和活动且需要优化的复杂过程,可视为多资源约束多项目调度问题(MRCMPSP)。优化完工时间并获得主动稳健调度以适应动态飞行甲板环境的变化具有重要意义。本文开发了一种关键链方法(CCM),用于时间关键和资源受限的舰载机保障稳健调度。CCM 包括在多资源约束和时间关键问题下制定理想的确定性计划,并在计划末尾添加项目缓冲(PB)以获得稳健的主动调度并处理不确定性。采用三角模糊数(TFN)描述各活动持续时间,计算PB大小,得到活动持续时间与缓冲区大小之间的适当比例。在数值研究中,设计了不同规模的模拟来计算稳健优化调度。计算结果表明,舰载机保障稳健调度CMM可以在资源分配的稳健主动优化调度中做出更好的决策。
2004 年伊始,美国海军“哈里·S·杜鲁门”号航空母舰在诺福克海军造船厂服役,为期 6 个月的“03/04 增量可用性” (PIA) 即将结束。该舰于 2 月份进行了海上试验,并立即根据新的“舰队响应计划” (FRP) 概念开始了部署间准备周期,这是第一艘从造船厂到部署都这样做的航空母舰。海上试验于 2004 年 2 月 16 日完成,标志着 HST1 的第二次 PIA 圆满结束 - 提前完成且低于预算。一周后,HST 重返海上,进行飞行甲板认证和舰队准备中队 (FRS)/舰载机联队 8 和训练司令部 (TRACOM) 舰载机资格认证作业。与此同时,船员们正在努力提高他们的航海技术和损害控制技能。接下来的两个月包括强化训练和评估,以根据“舰队响应计划”为该舰做好紧急激增状态的准备。量身定制的船舶培训可用性/最终
未来航母与超级航母:新问题与新技术 CSC 2004 主题领域 国家军事战略 执行摘要 标题:未来航母与超级航母:新问题与新技术 作者:美国海军少校 Sean P. Higgins 论文:新技术和新出现的问题(如联合攻击战斗机和向近海海军的转变)威胁着超级航母的未来。讨论:自航母诞生以来,人们就未来航母的大小和能力展开了激烈的争论。本文通过研究美国对大型航母的需求,探讨超级航母(一种在大小、能力和地位上都更优越的大型航空母舰)的时代是否即将结束。通过研究航母的发展、威胁、成本、新兴技术和能力,我们将发现,尽管价格便宜,但未来的航母仍将保持庞大的体型。航母已经发展到可以支持舰载机联队。飞机为航母的变革提供了主要来源。短距起飞和垂直着陆 (STOVL) 飞机的成功开发将扩大舰载机联队的能力,并要求航母具备新的能力。常规起降 (CTOL) 飞机延续了超级航母的传统。STOVL 和 CTOL 飞机的集成舰载机联队将实现联合部队和联军之间的互操作性。机电飞机发射系统 (EMALS)、无人机 (UAV) 和无人作战飞机 (UCAV) 等新兴技术将能够降低人力成本并修改船体设计。衡量总运营成本 (TOC) 将使新航母的预算估算更加高效,并有助于实现长期目标,因为它可以更轻松地保持在预算之内,避免成本超支。虽然其他海军强国都使用较小的航母,但美国是唯一拥有运营超级航母的能力和资源的海军强国。航母及其舰载机联队的能力是讨论下一艘超级航母时必须解决的关键问题。最终,航母的大小取决于执行任务所需的能力、海军的核心功能和总运营成本。结论:未来的航母设计必须以海军的功能和支持这些功能所需的能力为中心。CVN-76 和 CVN-77 将成为向 CVNX2 过渡的桥梁,CVNX2 是 2018 年及以后的下一代航空母舰。虽然美国海军目前专注于沿海地区,但海上基地的出现和新出现的威胁要求我们减少对蓝水能力的重视,但也不能忽视。转向小型航母的选择将限制我们作为超级大国的能力。大型航母将确保国家利益
着舰过程最后20秒风险较大,主要是因为舰载空气尾流强烈。据统计,1964年美国舰载着舰事故率白天为0.031%,夜间仅为0.1%,大大超过陆基着舰事故率[8]。另外,考虑到舰载机纵轴与着陆甲板纵轴呈9度左右夹角,飞机需要有一个横向速度来补偿舰载机的横向运动,此时侧滑角β也不为零。在小扰动条件下,对飞机动力学和运动学方程进行线性化,发现纵向和横向变量存在较强的耦合,表明在着舰最后阶段分别采用纵向控制环和横向控制环进行控制并不是有效的方式。飞行器的部分动力学和运动学方程可以写成公式1的形式,这是非线性系统的一种表达。处理非线性系统时,动态逆是一种常用的方法。它可以避免复杂的参数设定和增益调整。只要知道系统的精确数学模型,就可以应用动态逆进行控制[7, 10]。在准确了解飞行器动力学和运动学方程的情况下,动态逆是一种可行的飞行控制方法。( ) ( ) ( )
随附报告 S. 法案目的委员会概述本法案的预算影响(第 4 节)自由裁量授权和预算授权影响摘要 A 部分——国防部授权标题 I——采购副标题 A——拨款授权拨款授权(第 101 节)副标题 B——陆军计划关于陆军对夜视设备的需求和采购策略的报告(第 111 节)陆军确保炮管来源的计划(第 112 节)陆军战术轮式车辆计划战略(第 113 节)陆军弹药厂总体规划和投资战略年度更新的扩展和修改(第 114 节)陆军后勤增强计划采购策略报告(第 115 节) 副标题 C — 海军计划 减少需要维持的海军航母舰载机联队和航母舰载机联队总部的最低数量(第 121 节) 延长禁止为海军港口水上安全屏障提供资金的期限(第 122 节) 弗吉尼亚级潜艇计划的多年采购权(第 123 节) 副标题 D — 空军计划 与 RQ-4 飞机有关的限制和最低库存要求(第 131 节) 限制剥离 T-1A 训练飞机(第 132 节) 修改 A-10 飞机的最低库存要求(第 133 节)
随附报告 S. 法案目的委员会概述本法案的预算影响(第 4 节)自由裁量授权和预算授权影响摘要 A 部分——国防部授权标题 I——采购副标题 A——拨款授权拨款授权(第 101 节)副标题 B——陆军计划关于陆军对夜视设备的需求和采购策略的报告(第 111 节)陆军确保炮管来源的计划(第 112 节)陆军战术轮式车辆计划战略(第 113 节)陆军弹药厂总体规划和投资战略年度更新的扩展和修改(第 114 节)陆军后勤增强计划采购策略报告(第 115 节) 副标题 C — 海军计划 减少需要维持的海军航母舰载机联队和航母舰载机联队总部的最低数量(第 121 节) 延长禁止为海军港口水上安全屏障提供资金的期限(第 122 节) 弗吉尼亚级潜艇计划的多年采购权(第 123 节) 副标题 D — 空军计划 与 RQ-4 飞机有关的限制和最低库存要求(第 131 节) 限制剥离 T-1A 训练飞机(第 132 节) 修改 A-10 飞机的最低库存要求(第 133 节)