在制冷模式下,暖舱空气被鼓风机吸入(或吹入)空气处理器盘管。从舱内空气中去除热量可使其冷却。冷却后的空气被吹回舱内。从舱内空气中去除的热量被转移到通过盘管循环的淡水中。温水被泵回冷却器。然后,水通过冷却器蒸发器盘管循环,热量被转移到制冷剂,从而冷却水。然后,“热”制冷剂气体通过冷却器冷凝器盘管的外管循环。海水通过海水系统在冷凝器盘管的内管中循环。热量从制冷剂传递到海水中,并带走原有舱室空气的热量,将其泵出船外。然后,随着循环的重复,冷冻水(不是海水)通过管道以连续循环的方式泵回到空气处理器。
对乘客而言,客舱内其他重要因素包括整体照明水平以及乘客附近的照明水平、环境噪音和振动。最近,客舱空气的质量和杂质及其对人的影响引起了一些普遍关注,尤其是与烟草烟雾有关。然而,可以说,客舱空气中除烟草烟雾以外的其他方面对人类健康构成了更严重的问题。这些包括客舱内气压降低的影响,即使对于健康人来说,这种气压对呼吸系统的要求也比在海平面上更高。对于患有胃病、心脏病甚至牙齿疾病的乘客来说,气压降低可能会产生有害影响。还必须考虑客舱环境中相对湿度较低以及存在臭氧和宇宙辐射等大气危害对乘客的影响。
驾驶舱外,无论是自然环境(天气、鸟类)还是人造环境(空中交通),都与驾驶舱内(发动机故障)一样。机组人员必须根据这些动态情况集中注意力,注意力模式(Boy,2005)要适应外部和内部世界。现代驾驶舱提供的大量数据可能会扰乱注意力的分配,例如,这可能会损害重要信息的存储(例如,Casner,2006)。这种专注的后果之一是注意力在驾驶舱内集中的时间过长(Johnson、Wiegmann 和 Wickens,2006;Rudisill,1994)。事实上,美国国家运输安全委员会 (2010) 和联邦航空管理局均建议提供专门的教育和培训,以克服玻璃驾驶舱问题 (Schumacher、Blickensderfer 和 Summers,2005)。
• DVA/NVA:必须校正至 20/20-0。在驾驶舱内时必须始终佩戴矫正镜。• 视野:全视野。• 色觉:必须符合 I 级标准。• 深度感知:必须符合 I 级标准。
维护和监控行人禁区可靠的警报改变行为外部语音警报通知行人危险区域机舱内警报 - 提示操作员停止、检查和避免事故运动停止选项 - 是一种工程控制
• 两个挂载接口单元 (SIU),重 3.5 磅/总重 7 磅,位于货舱内 • 两个火箭接口单元 (RIU),重 3 磅/总重 6 磅,位于货舱内 SMS 的总重量仅为 24.2 磅。根据客户需求,挂载管理计算机通过 RS-422、MIL-STD-1553、ARINC-429 或以太网与多功能显示器和 MX-10D EO/IR 传感器和激光指示系统连接。对于 MD 530G 应用,SMS 支持最多 4 个武器站;包括机枪、非制导弹药和制导弹药的集成。具体武器系统包括: • Dillon Aero M134D-H 迷你枪, • FN Herstal 火箭机枪吊舱 (RMP) 和 FN Herstal 重机枪吊舱 (HMP-400), • Arnold Defense M260 7 发火箭吊舱。火箭系统的管理包括非制导和制导火箭变体,包括雷神 TALON 激光制导火箭。
手套箱为实验提供密封,确保小颗粒或危险材料被限制在舱内,不会漂浮在舱内。微重力科学手套箱 (MSG) 设施由 ESA 和 NASA 联合开发,支持材料科学、生物和生物技术、流体科学、燃烧科学和晶体生长研究领域,而生命科学手套箱 (LSG) 为生命科学和生物实验提供密封工作区。国际空间站有多个外部有效载荷平台。哥伦布外部有效载荷设施位于 ESA 哥伦布舱的右舷。日本实验舱 - 暴露设施附在日本实验舱的外部。EXPRESS 物流载体 (ELC) 是一个托盘,旨在支持外部研究硬件并存储在国际空间站使用寿命期间所需的外部备件(称为轨道更换单元)。目前,四个 ELC 安装在国际空间站桁架上,提供
当前发射器的局限性 • 目前部署的海军和空军火箭发射器无法使用带有可编程引信的 HYDRA-70 弹头。• 这些发射器还缺乏可在驾驶舱内选择的单发或连发射击。• 没有发射器可以完全任意顺序发射火箭。• 无论陆军飞机是否携带发射器,它们始终会携带火箭控制电子设备(及其重量)。
本研究对客机机舱模型中飞机加速引起的体积力对气流和污染物扩散的影响进行了数值模拟。六氟化硫 (SF 6 ) 被用作机舱内污染物,并代替粒径为 1.6 至 3.0 mm 的咳嗽颗粒。研究发现,这些体积力对污染物扩散现象和浓度有显著影响,尤其是在爬升阶段,在大部分模拟时间内,两个监测位置的时间积分浓度是稳定水平(巡航)飞行情况下的时间积分浓度的 2.4 到 2.8 倍。然而,在下降阶段,污染物的暴露量并没有明显变化。另一方面,空气速度在爬升和下降阶段明显增加,导致气流模式、气流循环幅度以及某些位置的气流循环方向发生明显变化。当前研究存在局限性,需要进行详细计算并考虑参数变化。研究结果值得进一步研究飞机加速产生的体力对各种客机客舱内气流和污染物扩散的影响。
考虑车舱摄像头和车舱内用户体验应用程序之间的交互,例如检测遗留物体的应用程序。在区域架构中,摄像头可能会将低压差分信号帧发送到区域控制器,区域控制器又将来自摄像头和其他设备的数据聚合到汽车以太网链路上,再发送到 CVC。然后,CVC 将提取相关数据,并通过其服务将数据传递给专用于车舱内用户体验的 OSP,可能通过 PCIe 传输,以确保尽可能高的传输速度。CVC 可以同时使用收集的数据进行分析、处理并通过以太网或 PCIe 连接将其发送到 RTU,RTU 又会通过 5G 蜂窝服务将该分析数据传输到云端。这将使“遗留物体”应用程序能够有效利用车载计算,同时有选择地应用基于云的对象识别或连接,以在需要时通知用户。