缺乏健康和改良的种植材料是香蕉和芭蕉生产扩张的主要制约因素。由于缺乏生产和分销优质种植材料的正规系统,情况更加恶化,迫使农民依靠植物的自然再生来供应。这通常是一个非常缓慢的过程,并且会产生少量的种植材料,这些材料很可能被土壤传播的病原体(如线虫)污染。为了克服这一制约因素,已经开发了几种技术来快速繁殖香蕉和芭蕉种植材料,包括在实验室无菌条件下进行微繁殖。虽然微繁殖技术可以提供大量的种植材料,但它们并不适合小农户的条件。因此,对于这些农民来说,不需要太多技术技能或设备的用户友好型技术将更具吸引力。国际热带农业研究所 (UTA) 一直在寻找替代方法来生产种植材料,以大规模分销改良的香蕉和芭蕉品种。替代方法分为两类:基于完全或部分去掉根茎的田间技术;以及远离田间的根茎大繁育技术。强烈建议对根茎进行处理以降低传播土壤污染物的风险,这是小农户传播方案中不可或缺的一部分。大繁育技术虽然依赖于基因型,但可以在 15 天内产生 8-15 株新植物/球茎,而对新长出的芽进行二次划痕处理有可能在相同的时间内将幼苗数量进一步增加 2-3 倍。通过这种方法获得的幼苗具有微繁幼苗的一致性,同时不易受到田间后期因素的影响。这种方法简单便宜,虽然需要一些最低限度的投资来建立繁育设备和断奶设施,因此适合中小型企业。然而,其利用受到多种因素的阻碍,其中最关键的是缺乏初始资本投资和技术技能。
香蕉、芭蕉或芭蕉属植物是一种大型草本植物,原产于印度和东南亚。它是最古老的栽培植物之一。香蕉有几种类型,根据其口味和果皮颜色进行分类。红香蕉有红色的果皮,果肉呈浅粉色。红香蕉最好在室温下完全成熟。苹果香蕉比普通香蕉品种小,颜色为黄色。它们往往成熟得更快。小香蕉是最小的香蕉品种之一,颜色为黄色。它们非常甜,非常适合婴幼儿食用。香蕉植物的所有部分都有药用价值。它具有能量价值、组织构建元素、蛋白质、维生素和矿物质的罕见组合。它是卡路里的良好来源,因为与任何其他新鲜水果相比,它富含固体,水分含量低。提供即时能量:-
杂草可以告诉您很多有关草坪状况的信息,并表明您需要做些什么才能种植出天然抗杂草和害虫的健康草。学会“读懂杂草”,了解它们对您的草坪护理方法和土壤条件的影响,这样您就可以创建健康的草坪,从长远来看,这将减少工作量。杂草在土壤压实、施肥不足、pH 值不平衡以及浇水、播种或修剪不当的草坪中茁壮成长。读懂杂草其实非常简单。使用下表识别草坪中的杂草,并根据以下信息纠正促进杂草生长的条件。例如,一年生蓝草通常表明土壤压实和浇水过多。曝气和适当的灌溉将纠正促进蓝紫色生长的条件。请记住,许多被视为杂草的植物具有有益的特性。尝试培养对某些杂草的耐受性。例如,三叶草被认为是一种典型的草坪杂草,它从大气中吸收游离氮并将其分布到草中,从而帮助草生长。三叶草根系广泛且极耐旱,为土壤生物提供重要资源,而且在草坪自然休眠后,三叶草仍能长时间保持绿色。马唐草可控制侵蚀;蒲公英的深根可将养分返回地表;而芭蕉是可食用的!
香蕉(Musa spp.),包括芭蕉,是亚热带和热带地区 140 多个国家种植的主要粮食和经济作物之一,全球年产量约为 1.53 亿吨,养活了约 4 亿人。尽管香蕉种植广泛且适应多种环境,但其生产面临着农业景观中经常共存的病原体和害虫的重大挑战。基于 CRISPR/Cas 的基因编辑的最新进展提供了变革性解决方案,可提高香蕉的恢复力和生产力。肯尼亚国际热带农业研究所的研究人员已成功利用基因编辑赋予香蕉对香蕉枯萎病 (BXW) 等疾病的抗性,方法是针对易感基因,并通过破坏病毒序列来抵抗香蕉条纹病毒 (BSV)。其他突破包括开发半矮化植物和增加 β-胡萝卜素含量。此外,经菲律宾监管部门批准,已开发出不易褐变的香蕉以减少食物浪费。香蕉基因编辑的未来前景一片光明,基于 CRISPR 的基因激活 (CRISPRa) 和抑制 (CRISPRi) 技术有望提高抗病性。Cas-CLOVER 系统为 CRISPR/Cas9 提供了一种精确的替代方法,证明了成功生成了基因编辑的香蕉突变体。精准遗传学与传统育种的结合,以及采用无转基因编辑策略,将是充分发挥基因编辑香蕉潜力的关键。作物基因编辑的未来前景令人振奋,可以生产出在不同的农业生态区茁壮成长、营养价值极高的香蕉,最终使农民和消费者受益。本文强调了 CRISPR/Cas 技术在提高香蕉的抗逆性、产量和营养品质方面的关键作用,对全球粮食安全具有重要意义。
背景:花的结构显著影响被子植物与环境的相互作用,尤其是因为它决定了植物授粉的物种集合。花器官特征如何发展的遗传基础在很大程度上已被阐明:主要有三类花同源基因,称为 A 类、B 类和 C 类基因,它们以组合方式决定在花中形成哪些器官 [1, 2]。根据所谓的花发育 ABC 模型,仅 A 类基因的表达会导致萼片的发育,A 类和 B 类基因的共同表达会导致花瓣的形成,B 类和 C 类基因的共同表达决定雄蕊,而 C 类基因的单独表达则会产生心皮。所有 ABC 基因都编码转录因子。然而,编码微小 RNA (miRNA) 的基因也已被证明对发育具有重要意义 [有关综述,请参阅参考文献 3]。ABC 基因和 miRNA 甚至可以一起起作用。已发现一种 miRNA,即 miR5179,可以调控 B 类基因的一个分支的成员,即兰花中的 DEF 样基因 [4]。这种 miRNA 非常引人注目。虽然编码 miRNA 的基因(miR 基因)通常具有较高的出生和死亡率,因此在进化时间尺度上仅存在很短的时间,但很少有基因获得重要的发育功能,因此在广泛的分类群中保存了数亿年。然而,miR5179 并不符合这两种模式。我们实验室对基因组、转录组和 miRNome 数据的分析表明,miR5179 可能起源于大约 2 亿年前的开花植物茎群,并在多个植物谱系中得到保存。因此,它出现在许多现存物种中,如猕猴桃(猕猴桃)、柑橘(橙子)、野芭蕉(香蕉)和水稻(水稻),表明 miR5179 具有重要作用。然而,相比之下,miR5179 在许多其他开花植物谱系中已经独立消失,例如在 Vitales、Malvales 和 Pandanales 目中,这表明 miR5179 在这些情况下是可有可无的。因此,miR5179 提出了一个有趣的难题:它很古老,但并未普遍保存。为什么它在某些植物中具有重要的功能,但在其他植物中却可有可无?
Anwar Aliya Fathima、Mary Sanitha、Leena Tripathi、Samwel Muiruri (2022) 木薯(Manihot esculenta)的食品和生物能源双重用途:综述。粮食和能源安全(已接受)Samwel K. Muiruri、Valentine O. Ntui、Leena Tripathi、Jaindra N. Tripathi (2021) 提高木薯(Manihot esculenta)耐旱性的机制和方法,当代植物生物学,28,100227,2214-6628。https://doi.org/10.1016/j.cpb.2021.100227。 Alice Lunardon、Samwel Muiruri Kariuki、Michael J. Axtell (2021) 番茄和本氏烟中瞬时引入的转基因中多顺反子人工微小 RNA 和反式 siRNA 的表达和加工。植物杂志,4,106,1087-1104。DOI:https://doi.org/10.1111/tpj.15221 Ogden, Aaron J.、Jishnu J. Bhatt、Heather M. Brewer、Jack Kintigh、Samwel M. Kariuki、Sairam Rudrabhatla、Joshua N. Adkins 和 Wayne R. Curtis 2020。“干旱和恢复期间的韧皮部渗出物蛋白谱揭示了番茄维管系统中的非生物应激反应”国际分子科学杂志 21,号。 12:4461。https://doi.org/10.3390/ijms21124461 Muiruri, KS、Britt, A.、Amugune, NO、Nguu, EK、Chan, S. 和 Tripathi, L. (2017)。在栽培三倍体和野生二倍体香蕉(芭蕉属)中表达着丝粒特异性组蛋白 3 (CENH3) 变体。植物科学前沿,8, 1034。DOI:10.3389/fpls.2017.01034 Muiruri, KS、Britt, A.、Amugune, NO、Nguu, E.、Chan, S. 和 Tripathi, L. (2017)。利用线粒体和核标记进行香蕉显性等位基因系统发育和组成亚基因组单倍型推断。基因组生物学与进化,9(10),2510-2521 10.1093/gbe/evx167 。Tripathi, JN、Ntui, VO、Ron, M.、Muiruri, S. K.、Britt, A. 和 Tripathi, L. (2019)。利用 CRISPR/Cas9 编辑香蕉属 B 基因组中的内源性香蕉条纹病毒,克服了香蕉育种中的一大难题。通讯生物学,2(1),46。https://doi.org/10.1038/s42003-019-0288-7
问卷调查并测量了婴儿的体重。使用 FRAP(铁还原抗氧化能力)测定法测定成熟乳样品的总抗氧化能力 (TAC),并使用 1,1-二苯基-2-苦基肼 (DPPH) 自由基评估自由基清除活性。结果:本研究最终样本量为 75 名哺乳期妇女。确定了两种主要的基本饮食,即油棕籽汁酱煮熟的米饭 (R-SG) 和配茄子酱的芭蕉和木薯煮熟的糊状混合物 (F-SAU),分别涉及 50 名和 25 名哺乳期妇女。对于 R-SG 和 F-SAU 饮食,在产后第 45 天和第 105 天收集的牛奶中 TAC 水平显著增加(P < .05),而在同一时期 DPPH 自由基抑制百分比没有显著差异。此外,接受 R-SG 饮食和 F-SAU 饮食的妇女以及产后 45 天和 105 天的母乳中的 TAC 和抗自由基活性在统计学上是可比的 ( P > .05)。另外,遵循这些饮食的妇女母乳中的 TAC 和抗自由基活性与产后 105 天新生儿的体重相关。结论:根据我们的研究结果,得出结论,R-SG 饮食和 F-SAU 饮食的妇女母乳中的抗氧化活性是可比的。关键词:抗氧化剂;母乳;饮食;科特迪瓦。1. 引言氧气对所有需氧细胞的生命都至关重要,因为它们利用氧气来产生能量。在这个氧化呼吸过程中,线粒体产生三磷酸腺苷 (ATP) 后会产生自由基。这些自由基通常是活性氧 (ROS) 或活性氮 (RNS) [1,2]。这些 ROS 或 RNS 通常在生物体中以较低但可测量的浓度产生,并且可能在细胞内信号传导和防御微生物等过程中有益甚至至关重要。此外,ROS 还参与细胞生长、分化、进展和死亡 [3]。另一方面,当它们过量产生时,它们会诱发氧化应激,从而导致细胞和组织损伤 [4]。出生时,新生儿暴露于相对高氧的宫外环境中,这是由于氧的生物利用度增加导致的,这大大增强了 ROS 的生成。因此,人类婴儿由于难以适应周围的氧气而处于氧化应激之下,尤其是由于新生儿时期的抗氧化防御机制尚未发育良好。人们认为氧化应激与许多新生儿疾病的发病机制有关,例如坏死性小肠结肠炎、支气管肺发育不良、肾衰竭、早产儿视网膜病变和脑室内出血 [5-7]。作为回应,哺乳动物细胞已经发展出抗氧化防御机制,以防止 ROS 和 RNS 引起的损伤。母乳被认为是婴儿生长发育的理想营养来源
1. Garcia-Bastidas, F. 等人。哥伦比亚首次报道由 Fusarium odoratissimum 引起的卡文迪什香蕉枯萎病热带小种 4。APS 出版物。(2019 年)。259 https://doi.org/10.1094/PDIS-09-19-1922-PDN 260 2. Varma, V. 和 Bebber, DP。气候变化对全球香蕉产量的影响。Nat. 261 Clim. Change 9 , 752-757 (2019)。262 3. Simmonds, NW 和 Shepherd, K。栽培香蕉的分类和起源。J. 263 Linn. Soc. Bot。55 , 302-312 (1955)。 264 4. Gold, CS、Kiggundu, A.、Abera, AMK 和 Karamura, D. 乌干达 Musa 品种的多样性、分布和农民偏好。Exp. Agric. 38, 39-50 (2002)。 266 5. Gambart, C. 等人。农业生态集约化战略对农场绩效的影响和机遇:乌干达中部和西南部香蕉种植系统案例研究。食品系统可持续发展前沿。23, 87 (2020)。 269 6. Wielemaker, F. 引自:Kema, GHJ 和 Drenth, A. (eds.)。实现香蕉的可持续种植。第 1 卷:栽培技术。伯利·多德农业科学系列。 271 Burleigh Dodds Science Publishing,英国剑桥(2018 年)。272 7. Ordonez,N. 等人。最糟糕的情况是香蕉和巴拿马病——当植物和病原体克隆相遇时。PLoS Pathog。11,e1005197(2015 年)。274 8. Ndayihanzamaso,P. 等人。开发用于检测东非和中非尖镰孢菌古巴专化种谱系 VI 菌株的多重 PCR 检测方法。欧洲植物病理学杂志(2020 年)。277 9. Soluri,J。口味的解释:出口香蕉、大众市场和巴拿马病。环境。278 Hist。7,386-410(2002 年)。 279 10. Stover, RH 疾病管理策略和香蕉产业的生存。植物病理学年鉴。24 ,83-91 (1986)。281 11. Bubici, G.、Kaushal, M.、Prigigallo, MI、Gómez-Lama Cabanás, C. 和 Mercado-Blanco, J. 香蕉枯萎病的生物防治剂。微生物学前沿。10 ,616 (2019)。283 12. Kaushal, M.、Mahuku, G. 和 Swennen, R. 枯萎病感染田中有症状和无症状香蕉相关的根部定植微生物组的宏基因组学见解。植物。9 ,263 (2020)。 286 13. Mollot, G.、Tixier, P.、Lescourret, F.、Quilici, S. 和 Duyck, PF 新的主要资源增加了对香蕉农业生态系统中害虫的捕食。农业与昆虫学。14 , 317-323 288 (2012)。 289 14. Djigal, D. 等人。覆盖作物改变香蕉农业生态系统中土壤线虫食物网。土壤生物化学。48 , 142-150 (2012)。 290 15. Karangwa, P. 等人。东非和中非尖镰孢菌古巴专化的遗传多样性。植物疾病。102 , 552-560 (2018)。 293 16. Jassogne, L. 等人。咖啡/香蕉间作为乌干达、卢旺达和布隆迪的小农咖啡 294 农民提供了机会。在 G. Blomme、P. Van Asten 和 B. Vanlauwe 中,撒哈拉以南非洲湿润高地的香蕉系统(第 144-149 页)。国际农业和生物科学中心。沃灵福德:CABI。(2013 年)。 17. Norgrove, L. 和 Hauser S. 喀麦隆南部农林业系统中不同树木密度和“刀耕火种”与“刀耕火种”管理下芭蕉的产量。大田作物研究。78,185-195(2002 年)。 18. Zhu, Y. 等人。水稻遗传多样性和疾病控制。自然 406,718-722(2000 年)。 19. Deltour, P. 等人。农林复合系统对香蕉枯萎病的抑制作用:土壤特性和植物群落的影响。农业生态系统环境。239,303 173-181(2017 年)。304