和库克索尼亚,这也反映了功能和形态上的真正差异。Salopella 有相当类似苔类植物的叶状体——接缝、下摆、两个配子体瓣;类似芽杯和裂片的结构——似乎仍然适合整体潮湿和群居的苔类植物摇篮栖息地。4)库克索尼亚的苔类植物要少得多(我们在它们身上也没有发现芽杯),似乎已经准备好单独旅行,至少可以去更远的地方,有水平的主根,在地面以上,利用沿途小沟和凹槽的营养水分;厚厚的角质层可以抵御干燥和通常炎热的气候,当然还有与真菌的巧妙共生(它们都有),为它们的后代在仍然贫瘠的腹地提供水分和营养必不可少的背包。这完全取决于它们的培育。这些最伟大的英雄没有后盾。世界应该每年设立一个世界植物日,以纪念这些植物的无价贡献。
在陆地定居后的1.5-2亿年左右,陆地植被以无种子植物为主。现代无种子植物是一个并系群落,以苔藓植物(苔类、地钱和角苔)、石松植物和蕨类植物为代表(图1)。从进化角度来看,无种子植物是追溯陆地植物进化重大转变的关键;从应用角度来看,它们是更好地理解种子、果实和花等农学重要性状的生物学的重要外群。无种子谱系的系统发育关系一直存在广泛争议,尤其是苔藓植物之间的关系。几乎所有苔藓、苔类、角苔和维管植物之间的分支顺序的可能组合都是根据形态学、核糖体和/或细胞器DNA证据提出的(参见参考文献1-3)。直到最近,使用转录组和基因组数据集的系统发育基因组学研究才开始提供更明确的答案。Wickett 等人 1 首次应用大量核基因来推断绿色植物的系统发育。在他们的研究中,苔藓和苔类之间的姐妹关系得到了强有力的支持,而角苔的位置则因数据类型(核苷酸与氨基酸)、子集(密码子位置或过滤阈值)和推理方法(连接与物种树方法或最大似然与贝叶斯)1 而异。随后,Puttick 等人 2 和 de Sousa 等人 2 3 使用可以更好地模拟速率和成分异质性的方法重新分析了 Wickett 等人 1 的数据集。这两项研究都证实,苔藓和地钱组成一个进化枝,而 de Sousa 等人 3 则进一步以高置信度将苔藓植物解析为单系植物。然而,应该强调的是,Wickett 等人 1 的数据集中金鱼藻的代表性非常有限,只有两种密切相关的 Nothoceros 物种的转录组。2019 年,随着千株植物 (1KP) 转录组 4 的全面发布,采样更加均衡。1KP 4 和 Harris 等人 5 的分析都支持将金鱼藻置于苔藓和地钱的姐妹地位。最近对金鱼藻基因组的分析进一步支持了所有苔藓植物的单系性 6、7。越来越多的证据表明,现存的陆地植物基本上是由
陆生植物的陆地定植涉及对环境压力(如脱水)的适应。虽然陆生植物进化过程中气孔和脱落酸 (ABA) 途径的创新已被充分研究,但尚不清楚绿藻和种子植物如何利用不依赖 ABA 的应激反应策略。我们发现,拟南芥植物的高渗应激会迅速且短暂地诱导 Thr349 处关键二聚体间界面处的 α-微管蛋白磷酸化。磷酸化的微管蛋白不会被整合到微管聚合物中,从而有效诱导现有微管的解体。负责该过程的植物特异性微管蛋白激酶 Propyzamide Hypersensitive 1 (PHS1) 通常被并置的磷酸酶结构域及其类似于激酶相互作用基序 (KIM) 的 N 端区域提供的磷酸酶活性灭活,但在高渗和盐度应激下会立即激活。磷酸酶失活的 PHS1 突变体具有组成活性,并在植物体内诱导剧烈的微管解聚。AlphaFold 的体外酶测定和蛋白质结构预测表明激酶调节有两种不同的机制:N 端延伸中的 KIM 促进 N 端折叠到激酶结构域上,从而物理阻断底物(微管蛋白)的可及性,而 C 端磷酸酶结构域使激酶催化位点中的关键残基(假定)脱磷酸化。急性和瞬时微管蛋白磷酸化以及随后由渗透胁迫引起的微管解体在拟南芥、苔类植物和衣藻中高度保守,表明其起源于淡水绿藻,早于脱落酸途径的进化。然而,其生理意义在很大程度上尚不清楚,可能是由于其高度瞬时性。