图1:VDW异质结构的无机组装。(a)几个从硅芯片伸出的悬臂的SEM显微照片。(b)示意图和(c)横截面高角环形暗场(HAADF)扫描透射电子显微镜(STEM)图像,显示了悬臂的多层金属涂层,可容纳2DM标本(样品中显示了多层MOS 2晶体中的样品)。(d)使用能量色散X射线光谱法在(c)中显示的区域的元素映射。(E)涂层过程后悬臂表面的AFM显微照片。均方根粗糙度值(r rms)在图像e上指示。 (F-H)采用的步骤将HBN晶体拾起到制造的悬臂上:(f)对齐,(g)接触和(h)升降。sem(l)和悬臂的光学(M)显微照片,拾取了厚(约40 nm)HBN晶体后。(i,j)拾取石墨烯晶体的步骤:对齐(I),接触和升降(J)。(n)光学显微照片显示了SIO 2上与石墨烯接触的悬臂(用虚线突出显示)。悬臂的灵活性可以准确控制层压过程。(k)石墨烯/HBN堆栈沉积在底部HBN晶体上。在整个底部HBN晶体被悬臂覆盖以选择性释放堆栈而不是将其捡起之前,层压过程要停止。(O)光学显微照片显示了氧化硅晶片上产生的异质结构,显示了较大的均匀区域。可以在补充第2节中找到有关其他样本的更多数据。
通过组装层状二维材料 1、2,可以设计出具有原子级精确垂直组成的范德华 (vdW) 固体。然而,由微机械剥离的薄片 3、4 手工组装结构与可扩展和快速制造不兼容。进一步设计 vdW 固体需要精确设计和控制所有三个空间维度上的组成以及层间旋转。本文,我们报告了一种机器人四维像素组装方法,用于以前所未有的速度、精心设计、大面积和角度控制制造 vdW 固体。我们使用机器人组装由原子级薄的二维组件制成的预图案化“像素”。晶圆级二维材料薄膜的生长和图案化采用清洁、非接触式工艺,并使用由高真空机器人驱动的工程粘合剂印章进行组装。我们制备了多达 80 个独立层的范德华固体,由 100 × 100 μ m 2 的区域组成,这些区域具有预先设计的图案形状、横向/垂直编程的成分和可控的层间角度。这使得对范德华固体进行有效的光学光谱分析成为可能,揭示了 MoS 2 中新的激子和吸光度层依赖性。此外,我们制备了扭曲的 N 层组件,其中我们观察到了扭曲的四层 WS 2 在≥ 4° 的大层间扭曲角下的原子重构。我们的方法能够快速制造原子级分辨的量子材料,这有助于充分发挥范德华异质结构作为新物理 2、5、6 和先进电子技术 7、8 平台的潜力。对硅等无机晶体材料的结构和化学成分进行精确的三维 (3D) 空间控制(x、y、z)是集成电路的基础。通过堆叠二维材料 (2DM) 形成的范德华 (vdW) 固体不受晶格可公度性或层间键合的限制,因此与传统的顺序沉积晶体 1、2 相比具有两个优势。首先,相邻层之间的晶格和化学灵活性意味着可以生产具有层可调电学 4、5、9、磁性 9、10 和光电 11-14 特性的任意垂直晶体组合物序列。其次,这种层间灵活性引入了一个额外的维度 θ,即层间晶格旋转或扭曲,作为控制 vdW 固体性质的新自由度。这已在
过渡金属三卡构基化(TMTC)是准二维(1D)MX 3-Type van der wa wa waals分层半导体,其中M是IV和V组的过渡金属元素,X表示chalcogen元素。由于独特的准1D晶体结构,它们具有多种新型的电气特性,例如可变的带镜,电荷密度波和超导性,以及高度各向异性的光学光学,热电和磁性。TMTC的研究在1D量子材料字段中起着至关重要的作用,从而在材料研究维度中实现了新的机会。目前,已经在材料和固态设备方面取得了巨大进展,证明了在实现纳米电子设备中的有希望的应用。本评论提供了一个全面的概述,以根据TMTCS调查材料,设备和应用程序的最新技术。首先,已经讨论了TMTC的符号结构,当前的主要合成方法和物理特性。其次,提出了各个领域中TMTC应用的示例,例如光电探测器,储能设备,催化剂和传感器。最后,我们概述了TMTC研究的机会和未来观点,以及基础研究和实际应用中的挑战。
当二维范德华材料被堆叠以构建异质结构时,Moir'E模式从扭曲的界面或单个层的晶格常数中的不匹配出现。放松原子位置是Moir'e模式的直接,通用的后果,对物理特性具有许多影响。moir´e驱动的原子放松可能被天真地认为仅限于界面层,因此与多层异质结构无关。但是,我们提供了两种类型的范德华异质结构的三维性质的重要性的实验证据:首先,在多层石墨烯中以小扭曲角(θ≈0。14°),我们观察到弛豫结构域的传播甚至超过18个石墨烯层。第二,我们展示了如何在BI 2 SE 3上使用多层PDTE 2,Moir´e晶格常数取决于PDTE 2层的数量。以实验发现的启发,我们开发了一种连续方法,以基于Ab Initi拟示的广义堆叠断层能量功能对多层弛豫过程进行建模。利用该方法的连续性属性使我们能够访问大规模的制度并与我们在这两个系统的实验数据达成协议。此外,众所周知,石墨烯的电子结构敏感取决于局部晶格变形。因此,我们研究了多层松弛对扭曲石墨系统状态局部密度的影响。我们确定对系统的可测量含义,通过扫描隧道显微镜在实验上访问。我们的多层松弛方法不限于讨论的系统,可以用来发现界面缺陷对各种层次感兴趣系统的影响。
磁耦合材料的应用为磁性的探索以及二维极限下的自旋电子学应用提供了新的机遇。[7–9] 在所有基于范德华层状体系的界面工程异质结构中,磁邻近效应对于操控自旋电子学、[10–12] 超导[13–15] 和拓扑现象至关重要。[16–18] 磁性 skyrmion 因其非平凡拓扑结构而得到深入研究,这导致了许多有趣的基本和动力学特性。[19–21] 这些主要见于非中心对称单晶[22–24] 超薄外延系统[25,26] 和磁性多层膜。 [27–31] 最近,在与氧化层 [32] 或过渡金属二硫化物 [33] 界面的范德华铁磁体中观察到了 Néel 型 skyrmion,通过调整铁磁体厚度可以控制 skyrmion 相。此外,使用各种范德华磁体,可以在其新界面中创建具有独特性质的 skrymion 相。承载多个 skyrmion 相的材料增加了该领域的丰富性,并且在设计方面具有额外的自由度
图 1:MRAM 示意图。(a) STT-MRAM 单元,(b) 和 (c) 具有电流诱导平面外和平面内自旋极化的 SOT-MRAM 单元。(b) 和 (c) 仅显示了 SOC 层顶面附近的自旋极化。
鉴于拓扑自旋纹理在信息存储技术中的潜在应用,其生成和控制是现代自旋电子学最令人兴奋的挑战之一。特别令人感兴趣的是磁绝缘体,由于其低阻尼、无焦耳加热和减少的耗散,可以提供节能的自旋纹理平台。本文证明了样品厚度、外部磁场和光激发之间的相互作用可以产生大量的自旋纹理,以及它们在绝缘 CrBr 3 范德华 (vdW) 铁磁体中的共存。使用高分辨率磁力显微镜和大规模微磁模拟方法,证明了 T-B 相图中存在一个大区域,其中存在不同的条纹畴、skyrmion 晶体和磁畴,并且可以通过相位切换机制进行内在选择或相互转换。洛伦兹透射电子显微镜揭示了磁性纹理的混合手性,在给定条件下属于布洛赫类型,但可以通过厚度工程进一步操纵为尼尔类型或混合类型。可以通过标准光致发光光学探针进一步检查不同磁性物体之间的拓扑相变,该探针通过圆偏振分辨,表明存在激子-skyrmion耦合机制。研究结果表明,vdW磁绝缘体是一种有前途的材料框架,可用于操纵和生成与原子级设备集成相关的高度有序的skyrmion晶格。
二维材料中的层间电子耦合可通过堆叠工程实现可调和的突发特性。然而,它也会导致二维半导体电子结构的显著演变和激子效应的衰减,例如当单层堆叠成范德华结构时,过渡金属二硫属化物中的激子光致发光和光学非线性会迅速降低。这里我们报告了一种范德华晶体——二氯化氧化铌 (NbOCl 2 ),其特点是层间电子耦合消失,块体形式下具有单层状激子行为,以及比单层 WS 2 高三个数量级的可扩展二次谐波产生强度。值得注意的是,强二阶非线性使得能够通过自发参量下转换 (SPDC) 过程在薄至约 46 纳米的薄片中产生相关参量光子对。据我们所知,这是第一个在二维层状材料中明确展示的 SPDC 源,也是有史以来报道的最薄的 SPDC 源。我们的工作为开发基于范德华材料的超紧凑片上 SPDC 源以及经典和量子光学技术中的高性能光子调制器开辟了一条道路 1–4 。
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的