今天的红色草莓是多年前与白色草莓杂交的。草莓和松木在田野中被挑选!松木与红色草莓非常相似,因为它们是超级食品!一种填充,低热量的食物,是叶酸,磷和维生素C的良好来源,自然生长和非GMO。
摘要:草莓育种始于15世纪,西欧的欧洲草莓物种的选择和种植,随后在智利进行了类似的发现和种植。当今最受欢迎的草莓种类是花园草莓,这是两个不同物种的混合体,带有科学名称Fragaria Ananassa。但是,有许多草莓品种,其中有些在某种程度上耕种。草莓物种根据其拥有的染色体数量分为许多遗传子类别。多年来,草莓农民采用了各种繁殖技术,从传统的植物繁殖开始,然后转向20世纪的分子繁殖和基因工程。在本评论文章中,讨论了有关草莓育种中使用的各种育种技术。但是,草莓生产存在许多障碍,这给全球的科学家带来了压力,以制定新的适应策略,以满足对高质量草莓生产的不断增长的需求。害虫和疾病以及极端天气的压力是对草莓生产的最大威胁。要解决其中一些问题并满足消费者对水果质量的需求,已经创建了品种。水果质量的总体可接受性是确定育种计划成功的关键因素,因为大多数发达的品种具有理想的特征,例如对生物和非生物压力的抗性,因此无法商业化,并且由于其质量差而无法在商业环境中生长。许多因素,包括长期少年,身材高,环境压力和高杂合性,阻碍了水果作物质量的改善。提高特定理想特征是一项挑战,因为水果作物的质量特征是多基因的,并且由许多基因控制。尽管多年生水果作物巧妙地忽略了这个问题,但已经尝试了许多尝试改善年度作物的定性特征。因此,使用传统和当代繁殖技术的结合可以帮助解决这些问题。处理费力的水果作物,生物技术和分子方法(如标记辅助选择,转基因,基因组编辑,基因组成因基因和候选基因)提供准确性和可靠性,以缩短繁殖周期。本评论的主要主题将是水果育种的困难以及各种育种方法的现状,以改善果树的水果质量。
草莓是一种非跃变型水果,采收后会发生不利的变化,如细胞损伤、软化和果实品质下降。保持水果高品质的方法之一是使用生态制剂(即生物刺激剂),这也可以避免使用农药,并支持可持续农业方法。我们在实验中研究了用作生物刺激剂的微生物制剂的有效性。使用含有枯草芽孢杆菌和多粘芽孢杆菌菌株和生物活性物质(K4、K5 和 K6)的制剂延缓了 Honeoye 和 Rumba 草莓的成熟过程,与对照组(K1 I、K1 II)相比,草莓的果皮颜色更亮。使用生物制剂后,草莓的口感得到改善,营养价值也提高了。与对照样品(K1 I、K1 II)相比,用 K4 和 K6 处理的 Honeoye 草莓以及用 K6 处理的 Vibrant 品种的可溶性固体含量 (SSC) 平均增加了 14%。用测试制剂处理的三个草莓品种(Honeoye、Rumba 和 Vibrant)的 DPPH 水平确定的抗氧化能力相似,范围在 83% 到 90% 之间。抗氧化剂含量差异最大的是花青素,Vibrant(K5、K6)和 Rumba(K3、K5、K6)草莓的花青素含量平均增加了 27%。总之,这些结果表明,所选制剂提高了 Honeoye、Vibrant 和 Rumba 品种草莓的品质。
解决方案并将其放入袋子中。MASH 2分钟3。将土木泥的草莓过滤到较小的烧杯4。用________________________________________________________________________________________
o在2021年在加利福尼亚州沃森维尔 - 萨利纳斯(Watsonville-Salinas)进行了69个草莓田和2022年在加利福尼亚州圣玛丽亚的68个田地。通过重组酶聚合酶扩增(RPA)诊断出的有症状植物(RPA),用于草莓的四种主要土壤生殖病原体(Macrophomina stapepolina,oxysporum oxysporum f。fragariae,phytophthora spp。和verticillium dahliae)表明,在沃森维尔 - 萨利纳纳斯(Watsonville-Salinas)中,病原体存在的比例大致相等,而菜豆则是圣玛丽亚(Santa Maria)中最普遍的病原体。o进行了复制的温室和野外试验,在将草莓种植在土壤中的草莓含有已知的接种水平的M. phoseolina水平之前,将小麦作为覆盖作物种植。巨摩托菌在草莓植物上的腐烂发生率,对土壤中的菜豆水平的影响以及土壤微生物组分析显示,在这种情况下,小麦覆盖的种植在减轻巨摩托菌的根腐腐烂方面无效。
草莓(fragaria×ananassa duch。)是全球消费和耕种最广泛的水果之一。山梨糖醇在植物对许多生物和非生物胁迫的反应中起作用。在这项研究中,我们打算了解山梨醇喷涂对草莓叶的生物活性化合物的影响。在不同浓度(0、25、50毫米和75毫米)中施用山梨糖醇,大大改善了草莓特征,例如总叶绿素,叶绿素A和B,类胡萝卜素和总酚类。随着山梨糖醇浓度的增加,叶绿素a和叶绿素B值在结果期间采集的样品中增加,并获得了更高的值。与对照相比,用山梨糖醇处理的草莓植物中的类胡萝卜素含量增加了约189.49%,总酚含量增加了30.85%。山梨糖醇的供应减少了类黄酮含量。结果表明,山梨糖醇治疗对草莓的整体生长没有抑制作用。在分析的生化参数中,叶绿素,酚类和类胡萝卜素含量增加,而山梨糖醇的含量随施用山梨糖醇的含量降低。
从表型上看,编辑植物的营养生长与野生型相似。所选 8 个品系的果实质量参数显示,重量、长度、颜色和硬度均有所变化,具体取决于品系,其中大多数品系的长宽比低于野生型,与对照相比,转基因果实的伸长率较低且更方。此外,几乎所有编辑品系的果实硬度均显著增加,FaPG1 编辑程度与收获时的果实硬度之间存在明显的正相关关系。
白粉病是草莓生产中最严重的疾病之一。迄今为止,很少有商业草莓品种被认为具有完全抗性,因此必须实施广泛的喷药计划来控制病原体。在这里,我们进行了一项大规模田间试验,以确定不同草莓基因型的叶片和果实组织的白粉病抗性状况。这些表型数据用于识别与组织特异性白粉病抗性相关的数量性状核苷酸 (QTN)。总共发现六个稳定的 QTN 与叶面抗性有关,其中一个位于 7D 染色体上的 QTN 与抗性增加 61% 相关。与叶片结果相反,没有与果实抗病性相关的 QTN,在草莓果实上观察到高水平的抗性,果实和叶片症状之间没有观察到遗传相关性,表明组织特异性反应。除了识别基因位点之外,我们还证明了基因组选择可以快速提高基因型的叶面抗性,并有可能捕获种群中存在的 50% 以上的遗传叶面抗性。迄今为止,草莓中强抗白粉病的育种一直受到天然抗性的定量性质以及缺乏有关该性状的遗传控制知识的阻碍。这些结果解决了这一不足,为社区提供了可用于基因组知情育种的大量信息,实施该育种可以提供对抗白粉病的天然抗性策略。
摘要 野生二倍体草莓Fragaria vesca是栽培草莓的基础研究模型。目前可用的参考基因组仅限于两个密切相关的种质,即Hawaii 4和CFRA2339。广泛使用的模型种质‘Yellow Wonder’尚未有其参考基因组。在本研究中,使用Oxford Nanopore长读和Illumina短读的组合组装了第7代自交系‘Yellow Wonder’的基因组。这个220兆碱基对基因组的从头染色体规模组装包含34,007个基因,这些基因是通过从Hawaii 4基因组注释中移植过来进行注释的。基因组比较表明‘Yellow Wonder’基因组与之前发表的两个F. vesca种质,即Hawaii 4和CFRA2339相对不同。 “黄色奇迹”参考基因组的出现为草莓属植物增添了另一个重要的基因组资源,使草莓的研究得以快速进展。
白粉病是草莓生产中最有问题的疾病之一。迄今为止,很少有商业草莓品种被认为具有完全耐药性,因此,必须实施广泛的喷雾计划来控制病原体。在这里,使用大规模的场实验来确定各种草莓基因型面板中叶片和水果组织的白粉病耐药性状态。该表型数据用于识别与组织粉状霉菌耐药性相关的定量性状核苷酸(QTN)。总共发现六个稳定的QTN与叶面耐药性相关,其中1个QTN在7D染色体上与耐药性增加61%有关。与叶子的结果相反,没有QTN与抗果疾病抗性有关,并且在草莓果实上观察到了高度的耐药性,在水果和叶面症状之间未观察到遗传相关性,表明组织特异性反应。除了遗传基因座的鉴定之外,我们还证明了基因组选择可以导致跨基因型的叶面耐药性快速增长,并有可能捕获人群中存在的遗传叶子抗性的50%。迄今为止,自然抵抗的定量性质和与性状的遗传控制有关的知识的定量性质阻碍了草莓中强大的白粉病耐药性的繁殖。这些结果通过为社区提供可用于基因组知情育种的大量信息来解决这一短缺,实施可能会提供一种自然的抵抗策略来打击白粉病。