摘要:可以设计定期间隔短的短膜重复(CRISPR/CAS)蛋白质来结合指定的DNA和RNA序列,并有很大的希望,可以准确检测核酸以进行诊断。我们将市售的试剂集成到基于CRISPR/CAS9的侧向流中,该试剂可以检测到具有单碱体特定的急性急性呼吸综合征2(SARS-COV-2)序列。此方法需要最小的设备,并代表了基于场景的简化平台。我们还开发了能够在单个反应中检测和区分SARS-COV-2,溶液和B的快速,多重荧光CRISPR/CAS9核酸酶裂解测定测定法,并区分SARS-COV-2,溶液和B,以及呼吸道合胞病毒。我们的发现提供了CRISPR/CAS9护理点诊断的原则证明,以及一个可扩展的荧光平台,用于鉴定具有重叠症状的呼吸道病毒病原体。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 4 月 1 日发布。;https://doi.org/10.1101/2020.03.30.016477 doi:bioRxiv preprint
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
活检是肿瘤诊断的黄金标准,因为该技术提供了有关肿瘤发生和进展的高度详细且可靠的信息。类似于沙漠甲虫的离散性润湿性,在这项研究中,开发了荧光聚合酶链反应(F-PCR)微针阵列(MNA)平台,用于有效的空间肿瘤活检。通过自下而上的自组装和自上而下的Photolithog-raphy的耦合策略来制造此MNA。它包括疏水二氧化硅组装的底物和石墨烯气凝剂 - 凝胶凝胶混合微针峰。从其石墨烯混合微尼峰的亲水性和吸收能力中造成的好处,MNA可以轻松地穿透组织样品并立体地收集肿瘤酸性生物标志物。此外,由于平台的离散性,组织流体和PCR液体都可以轻松从底物中去除,并且每个微针峰都与直接导致F-PCR反应进行肿瘤标记物发现的F-PCR反应相似。基于这些优势,F-PCR-MNA平台被揭示为在Standard溶液,小鼠组织样品和临床标本中检测肺癌的DNA生物标志物的理想选择,从而将其实际潜力作为创新的肿瘤生物瘤系统。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2021年2月16日发布的此版本中显示在版权所有的此版本中。 https://doi.org/10.1101/2021.02.15.431139 doi:Biorxiv Preprint
视网膜是中枢神经系统(CNS)的扩展,与中枢神经系统共享共同的胚胎学起源。神经感觉视网膜和中枢神经系统从神经外胚层发展[1]。使用非侵入性视网膜成像方式诊断和监测神经退行性疾病的兴趣越来越大。多发性硬化症(MS)是一种自身免疫性疾病,其特征是CNS的炎症,脱髓鞘以及神经元和轴突变性,可能会出现视觉症状。视网膜变化也可能反映神经退行性疾病[2-6]。研究表明,多发性硬化症中不同视网膜神经层的感情。green等人在MS中具有视网膜组织,并描述了多发性硬化症中神经节和内部核细胞层核损失的视网膜广泛的视网膜[7]。尽管MS是一种脱髓性疾病,人类视网膜缺乏髓磷脂,但炎症
由青枯病菌引起的青枯病是辣椒 (Capsicum annuum) 植物的一种难以控制的疾病。预防青枯病的一种技术是使用拮抗细菌(如荧光假单胞菌和蕈状芽孢杆菌)联合使用。本研究旨在确定荧光假单胞菌 pf-142 和蕈状芽孢杆菌联合使用是否比体外单一使用效果更好。本研究采用完全随机设计 (CRD),共进行四种处理(荧光假单胞菌 pf-142、蕈状芽孢杆菌、荧光假单胞菌 pf-142 + 蕈状芽孢杆菌和对照),重复六次,共计 24 个实验单元。观察指标为青枯病菌的发病症状、致病力、荧光假单胞菌pf-142与蕈状芽孢杆菌复合体对青枯病菌的配伍性及抑菌率。研究发现,青枯病菌对辣椒植株有较高的致病力,可引起辣椒植株萎蔫。荧光假单胞菌pf-142与蕈状芽孢杆菌复合体不产生抑菌圈,说明二者配伍性较好。荧光假单胞菌pf-142与蕈状芽孢杆菌复合体产生的抑菌圈最宽,说明对青枯病菌具有较强的拮抗能力。
透明样品的荧光量子产率C.Würth#,M。Grabolle#,J。Pauli,M。Spieles和U. Resch-Genger BamBundesanstaltfür物质FORSCHUNG UND - PRüfung,Richard-Willstaetter-Str。11,D-12489德国柏林#:两位作者同样贡献了MS通讯作者Ute Resch-Genger博士Ute Resch-Genger博士,联邦材料研究与测试研究所(BAM),第1.10级生物探测器,Richard-Willstaetter-STR。11,D-12489柏林,德国,电话:0049-(0)30-8104 1134,传真:0049-30-30-8104 1157,电子邮件:ute.resch@bam.de摘要 - 发光技术是生活和材料史上最广泛使用的检测方法。这些方法的核心是多种荧光报道,即简单染料,荧光标签,探针,传感器以及来自不同荧光团类别的开关,范围从小有机染料和金属离子复合物,量子点和量子点和上的纳米晶体,到不同尺寸的荧光量或实验室的液体 - 型号或实验室。荧光团比较的关键参数是荧光量子产率(φF):直接度量吸收光转化为发射光的效率。在此协议中,我们描述了使用光学方法对透明溶液中荧光团相对和绝对确定的相对和绝对确定的程序,并解决了不确定性和荧光团类别特定挑战的典型来源。对于φF的相对确定,使用常规荧光光谱仪分析样品。为了绝对确定φF,使用了校准的独立集成球体设置。为了减少针对相对测量的标准相关不确定性,我们引入了CA波长区域的八个候选量子产量标准标准。350 nm至950 nm由我们评估的商业和定制设计的仪器。使用这些方案和标准,可以在2小时内实现5%至10%的不确定性。简介
等离子体物理及其工程应用在进行血浆现象的诊断测量方面遇到了很长时间,而不会确定不扰动等离子体。Langmuir探针通常提供血浆的基本诊断,以产生血浆密度,电子温度和浮动潜力。然而,探针的物理存在可能会扰动血浆或引入等离子体体积的杂质介绍的机会。等离子体的光学诊断提供了对等离子体特性的非扰动测量值,特别是离子的可能性。研究人员已经利用了来自等离子体的自然发射光谱,并意识到可以指定可能发生光学诊断的空间位置和时间的光学诊断工具将是与背景等离子体辐射相比的巨大优势。是激光诱导的荧光(LIF)作为诊断工具的一般概述,其在等离子体处理源中的特定应用及其在此类进一步应用中的潜力。Stern和Johnson W 1 X报告了等离子体中LIF的早期使用。基本上,LIF涉及使用单模激光器用至少一个结合的电子询问等离子体离子,这可以通过激光的正确多普勒移位响应,以通过在第二光子的发射中吸收激光光子来吸收激光光子。通常,此过程涉及亚稳态电子电子的激发,当