个性化医疗是解决癌症精准诊断和有效治疗挑战的关键技术[1],比单一的诊断或治疗方法更具优势。癌症诊疗在患者分层和个性化医疗以及实时监测纳米药物治疗过程方面显示出巨大潜力,从而提供有关纳米药物治疗效果的反馈。[2]诊疗系统的诊断功能提供有关生物体内肿瘤位置和大小的信息,而治疗功能则侧重于药物的抗肿瘤作用。[3]此外,分子成像是医学成像中最先进的技术,涉及肿瘤诊断、精准药物开发等领域。[4]在各种技术中,光声 (PA) 成像提供厘米级深成像深度,而荧光 (FL) 成像具有具有出色分辨率和灵敏度的优势;因此受到了广泛关注。PA 成像具有低灵敏度,而 FL 成像缺乏空间分辨率;因此,两者各有优缺点,具有互补的优势。
摘要 基因组编辑技术的进步为治疗罕见遗传疾病创造了机会,而这些疾病在治疗开发方面往往被忽视。尽管如此,仍然存在重大挑战:即在正确的细胞类型中实现对治疗有益的编辑水平和种类。在这里,我们描述了 FIVER(荧光体内编辑报告基因)的开发——这是一种模块化工具包,用于体内检测基因组编辑,具有非同源末端连接(NHEJ)、同源定向修复(HDR)和同源独立的靶向整合(HITI)的不同荧光读数。我们证明荧光结果可靠地报告在原代细胞、类器官和体内使用不同基因组编辑器编辑后的遗传变化。我们展示了 FIVER 在高通量无偏筛选中的潜力,从原代细胞中基因组编辑结果的小分子调节剂到全基因组体内 CRISPR 癌症筛选。重要的是,我们展示了其在基因治疗感兴趣的出生后器官系统(视网膜和肝脏)中的体内应用。FIVER 将广泛地帮助加快许多遗传疾病的治疗性基因组手术的发展。
2 美国利伯缇大学公共和社区健康系 摘要 纳米技术的最新进展极大地提高了近红外荧光 (NIRF) 探针在癌症成像中的实用性。本文研究了装载 NIR 染料(如吲哚菁绿 (ICG) 和 DiR)的纳米粒子的益处,这些染料以能够穿透深层组织和产生低背景自发荧光而闻名。利用增强的渗透性和保留 (EPR) 效应,这些纳米粒子可以有效靶向肿瘤组织,支持先进的成像技术和精准药物输送。该综述强调了 NIRF 成像在分子诊断中的变革潜力,特别是其在分子水平上区分恶性组织的能力。它还探索了各种 NIRF 染料类型,例如基于菁和 BODIPY 的探针,以及旨在增强成像特异性和治疗益处的多功能药剂。此外,结合包括抗体和小分子在内的靶向机制可提高这些探针的准确性。尽管存在药代动力学和毒性等挑战,纳米粒子探针能够实现实时肿瘤追踪和多模态成像,凸显了其在推进癌症诊断和治疗方面的关键作用。通过促进治疗诊断方法的整合,这些技术为个性化肿瘤治疗和改善患者预后提供了有希望的途径。关键词:近红外荧光 (NIRF) 成像;纳米粒子;癌症诊断;肿瘤靶向;生物相容性;分子成像 1. 简介 1.1. 近红外荧光 (NIRF) 成像概述
摘要:通过光学传感器手段的成像方法应用于医学研究和诊断,空气动力学,环境分析或海洋研究等不同科学领域。在对该领域的一般介绍之后,本评论重点介绍了20122年至2022年之间发表的作品。涵盖的主题包括平面传感器(Optrodes),纳米探针和敏感涂料。高级传感器材料与成像技术相结合,可以可视化参数,这些参数没有固有的颜色或荧光,例如氧,pH,CO 2,H 2 O 2,Ca 2+或温度。在开发多个传感器和用于引用信号的方法的进展中,也强调了使用实验室中的模型系统的设备设计和应用程序格式的最新进展,或者在该领域的测量方法中的进度也是如此。
Rose 康复诊所是一家由 Maggie-Lee Huckabee 教授和临床主任 Lucy Greig 领导的专业评估和治疗诊所。我们提供具体、有效和创新的诊断和康复程序,这些程序由最新研究和患者的生理需求驱动。我们专门提供强化康复计划,以最大限度地恢复急性后和慢性患者的功能。虽然我们对中风康复特别感兴趣,但我们的临床服务扩展到所有吞咽障碍患者。我们是新西兰唯一一家提供视频透视吞咽研究的私人诊所。我们拥有自己的 Flurostar 系统,我们所有的治疗师都接受过辐射安全培训。此外,还有一位咨询放射科医生。
AF22e 是一款基于紫外荧光的标准污染监测仪,它是测量环境空气中 SO 2 浓度的标准方法 ( EN 14212 )。该方法基于 SO 2 因吸收紫外线 (UV) 能量而产生的荧光。光电二极管测量紫外线灯产生的紫外线辐射。该测量值用于信号处理,以补偿紫外线能量的任何变化。分子在紫外线下恢复特定的荧光:这种荧光由放置在反应室附近的 PM 管可视化。碳氢化合物芳香族“喷射器”概念可确保完全消除碳氢化合物干扰,从而实现极其准确的测量。
daf-16 编码一种广泛表达的转录因子,在多种发育和生理过程中发挥作用 (Lin et al., 1997; Ogg et al. , 1997; Tissenbaum, 2018),包括在神经系统中 (Kim and Webb, 2017)。DAF-16 蛋白表现出高度动态的细胞质到核易位,过去曾使用多拷贝构建体进行可视化,这可能会产生潜在的过表达伪影(例如 (Henderson and Johnson, 2001) 中描述的那些)。为了避免这种过表达效应,生成荧光标记的 daf-16 等位基因将很有用。同样,生成 daf-16 的条件等位基因将有助于解决有关 daf-16 作用重点的许多悬而未决的问题。为了解决这两个问题,我们最近生成了一个带有 mNeonGreen 标记的 daf-16 等位基因,该等位基因还包含一个生长素诱导的降解子 (Bhattacharya 等人,2019;Zhang 等人,2015)。该等位基因 daf-16(ot853[daf- 16::mNG::AID]) 使我们能够为神经元类型特异性 daf-16 耗竭提供概念验证 (Bhattacharya 等人,2019)。该等位基因的一个问题是,由于其荧光标记 (mNeonGreen) 的发射光谱,它不能与基于 gfp 的表型读数结合使用。
可控制发光颜色的可光控发光分子开关被认为是智能和发光材料之间的理想整合。剩余的挑战是将良好的发光特性与多种波长转化相结合,尤其是当在形成良好固定纳米构造的单个分子系统中构建时。在这里,我们报告了一个π扩展的光成色分子光电开关,该开关允许全面成就,包括广泛的发射波长变化(宽240 nm,400 - 640 nm),高光相异构范围(95%)和纯发射颜色(纯最高宽度)。我们采用调节合成和构造中分子内电荷转移的有利机制,并进一步通过简单的光控制实现了全颜色的发射。基于此,均具有光活化的抗相互作用功能和自我搜索的Photriting Fimm。这项工作将为智能光学材料的设计提供深入的了解。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年8月26日发布。 https://doi.org/10.1101/2024.08.24.609500 doi:Biorxiv Preprint
