超分辨率显微镜已在纳米尺度分辨率下实现了成像。但是,在不引入可能误导数据解释的文物的情况下达到这种细节水平,需要在整个成像采集中保持样本稳定性。此过程的范围从几秒钟到几个小时,尤其是在将活细胞成像与超分辨率技术相结合时。在这里,我们基于实时跟踪效果标记的3 d主动样品稳定系统。为了确保广泛的可访问性,该系统是使用易于可用的避开功能的光学和光子组件设计的。此外,随附的软件是开源的,并用Python编写,促进了社区的采用和定制。,我们在侧面和轴向方向上在1 nm内实现样品运动的标准偏差,持续时间在小时范围内。我们的方法可以轻松地整合到现有的显微镜中,不仅使延长的超分辨率显微镜更容易访问,而且还可以使共同体和宽阔的现场活细胞成像实验跨小时甚至几天。
长期相互交联和肌脑脊髓炎/慢性疲劳综合征(ME/CFS)患者的患者具有相似的症状,包括运动后不适,神经认知障碍和记忆力丧失。在这两种情况下的神经认知障碍都可能与海马子场中的变化有关。因此,这项研究比较了17个长卷,29名ME/CFS患者和15个健康对照组(HC)的海马园林子场的变化。在7 telsa MRI扫描仪上以亚毫米的各向同性分辨率获取结构MRI数据,然后使用FreeSurfer软件估算每个参与者的海马子场量。我们的研究发现,与HC相比,长期相互关联和ME/CFS患者的左海马子场中的体积明显更大。包括包括左下底部(长covid; p = 0.01,me/cfs; p = 0.002,),前延期头(长covid; p = 0.004,me/cfs; p = 0.005),分子层层hippocampus hippocus heampocus heamp heamp heamp; p = 0.014,me/cfs; covid; p = 0.01,me/ cfs; p = 0.01。 值得注意的是,长期covid和ME/CFS患者之间海马子场的体积相似。 此外,我们发现海马子场的体积与“疼痛”,“疾病持续时间”,“疲劳的严重程度”,“浓度受损”,“不恢复睡眠”和“身体功能”在两种条件下的“疼痛”,“疲劳的严重程度”之间存在显着关联。 这些发现表明,海马改变可能导致长期Covid和ME/CFS患者所经历的神经认知障碍。 此外,我们的研究这两个条件之间的高光相似性。包括左下底部(长covid; p = 0.01,me/cfs; p = 0.002,),前延期头(长covid; p = 0.004,me/cfs; p = 0.005),分子层层hippocampus hippocus heampocus heamp heamp heamp; p = 0.014,me/cfs; covid; p = 0.01,me/ cfs; p = 0.01。值得注意的是,长期covid和ME/CFS患者之间海马子场的体积相似。此外,我们发现海马子场的体积与“疼痛”,“疾病持续时间”,“疲劳的严重程度”,“浓度受损”,“不恢复睡眠”和“身体功能”在两种条件下的“疼痛”,“疲劳的严重程度”之间存在显着关联。这些发现表明,海马改变可能导致长期Covid和ME/CFS患者所经历的神经认知障碍。此外,我们的研究这两个条件之间的高光相似性。
由青枯病菌引起的青枯病是辣椒 (Capsicum annuum) 植物的一种难以控制的疾病。预防青枯病的一种技术是使用拮抗细菌(如荧光假单胞菌和蕈状芽孢杆菌)联合使用。本研究旨在确定荧光假单胞菌 pf-142 和蕈状芽孢杆菌联合使用是否比体外单一使用效果更好。本研究采用完全随机设计 (CRD),共进行四种处理(荧光假单胞菌 pf-142、蕈状芽孢杆菌、荧光假单胞菌 pf-142 + 蕈状芽孢杆菌和对照),重复六次,共计 24 个实验单元。观察指标为青枯病菌的发病症状、致病力、荧光假单胞菌pf-142与蕈状芽孢杆菌复合体对青枯病菌的配伍性及抑菌率。研究发现,青枯病菌对辣椒植株有较高的致病力,可引起辣椒植株萎蔫。荧光假单胞菌pf-142与蕈状芽孢杆菌复合体不产生抑菌圈,说明二者配伍性较好。荧光假单胞菌pf-142与蕈状芽孢杆菌复合体产生的抑菌圈最宽,说明对青枯病菌具有较强的拮抗能力。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2024年12月27日发布。 https://doi.org/10.1101/2024.12.26.630335 doi:Biorxiv Preprint
了解细胞的复杂三维结构在生物学的许多学科中至关重要,尤其是在神经科学中。在这里,我们介绍了一组模型,包括3D变压器(Swinuneter)和一种新颖的3D自我监督学习方法(WNET3D),旨在解决生成3D地面真相数据和量化3D卷的核的固有复杂性。我们开发了一个名为CellSeg3d的Python软件包,该软件包在Jupyter笔记本和Napari GUI插件中提供了对这些模型的访问。认识到高质量的3D地面真相数据的稀缺性,我们创建了一个完全被人类宣传的中膜数据集,以提高该领域的评估和基准测试。为了评估模型性能,我们在四个不同的数据集中进行了测试:新开发的MesoSpim数据集,一个3D Platynereis-ish-Nuclei共聚焦数据集,一个单独的3D Platynereis-Nuclei灯光数据集,以及一个具有挑战性且具有挑战性和密集包装的Mouse-Skull-Nucleii colderii coldasaset。我们证明,我们的自我监管模型WNET3D(未经任何地面真相标签训练)以最先进的监督方法来实现绩效,为在标签式生物学环境中更广泛的应用铺平了道路。
注意:对于SAA转换器,在转换时间点之前和之后提供了队列特征(即分别使用CSF 𝛼 -SYN SAA-的最后一个时间点,分别与CSF 𝛼 -SYN SAA +的第一个时间点)。n(%),用于连续变量的中位数(IQR)。在支持信息中,表S1提供了临床和生物标志物数据的数据计数和百分比。缩写:β,淀粉样蛋白β; ADAS-COG11,阿尔茨海默氏病评估量表认知子量表11-项目; Ancova,协方差分析;方差分析,方差分析; apoe,载脂蛋白E; CDR-SB,临床痴呆评级盒子的总和; CSF,脑脊液;铜,认知没有受损; MCI,轻度认知障碍; MMSE,小型国会考试; PACC,临床前阿尔茨海默氏症的认知复合材料; p-tau181,磷酸化的tau181; SAA,种子扩增测定法。皮尔森的卡方测试。b单向方差分析。c Fisher精确测试。d Ancova针对年龄,性别,教育,诊断和APOE进行了调整。e Ancova针对年龄,性别,教育,APOE,诊断和CSFAβ42状态进行了调整。f逻辑回归针对年龄,性别,教育,诊断和APOE进行了调整。g配对t检验:所有连续变量; McNemar测试:所有二进制变量;配对标志测试:诊断。
视网膜是中枢神经系统(CNS)的扩展,与中枢神经系统共享共同的胚胎学起源。神经感觉视网膜和中枢神经系统从神经外胚层发展[1]。使用非侵入性视网膜成像方式诊断和监测神经退行性疾病的兴趣越来越大。多发性硬化症(MS)是一种自身免疫性疾病,其特征是CNS的炎症,脱髓鞘以及神经元和轴突变性,可能会出现视觉症状。视网膜变化也可能反映神经退行性疾病[2-6]。研究表明,多发性硬化症中不同视网膜神经层的感情。green等人在MS中具有视网膜组织,并描述了多发性硬化症中神经节和内部核细胞层核损失的视网膜广泛的视网膜[7]。尽管MS是一种脱髓性疾病,人类视网膜缺乏髓磷脂,但炎症
实时询问细胞过程的需求驱动了活细胞荧光生物传感器的膨胀工具箱的开发。尤其是,遗传编码的荧光生物传感器已解锁了复杂组织模型和体内生物体研究中实时单细胞代谢分析的潜力。荧光生物传感器还提出了一种有力的方法,可以在与高通量,自动化方法兼容的简单细胞培养系统中获得对活细胞代谢的定量见解。本申请说明为基于图像的自动分析的工作流程提供了胞质NAD+/NADH比率的基于图像的分析,这是细胞代谢和增殖的核心核心状态。在这里,单仪器解决方案结合了自动多通道图像采集,图像处理,细胞分析和比率信号定量。为了证明这种方法所产生的定量见解,我们探索了由常见历史但通常没有报告的细胞培养条件变化所塑造的代谢变化。
石油和天然气复合物的开发与提取的碳氢化合物的运输方法的改善密不可分。使用内部光滑涂料是提高运输天然气系统效率的方法之一。这些涂层允许降低气体运输成本,并在附加的内部管道腔免受腐蚀损伤中保护。由于将天然气产量转移到远北的趋势,其负温度非常低,并且在运输的天然气中将较重的碳氢化合物组件的比例增加,因此有必要提出新的技术解决方案,以确保在新条件下主要的天然气管道的有效运行。作者建议研究使用以前尚未用于气管道的荧光塑料涂层的可能性,并被认为是有希望的。本文介绍了对使用的环氧涂层和施加在钢板表面上的有希望的荧光塑料涂层的比较分析。将环氧涂层应用于板的表面,该表面通过沙蓝色清洁,在使用低粘合性能的荧光塑料涂层之前,准备板表面以确保通过初步激光处理和随后的冷磷脂确保牢固的粘合键。在工作过程中,进行了对涂料的物理和机械特征的研究,包括确定正常和负温度下涂层的影响强度,以及通过Erickson方法确定弹性,以及确定弯曲强度,弯曲强度和等效粗糙度的确定。根据研究的结果,与环氧涂层相比,在低温下,荧光塑料涂层具有更大的弹性,弯曲强度和冲击强度。此外,还发现,荧光塑料涂层在等效粗糙度方面不如环氧涂层,这会影响液压抗性的量。因此,这项工作给出了将荧光塑料涂层作为内部光滑涂层的相关性,以确保在负温度的条件下,气管道的效率更高,同时增加了运输气体中较重的碳氢化合物组件的比例。关键词:气管管道,荧光塑料涂层,环氧涂层,平滑涂层,冲击强度,涂层弹性,等效的粗糙度系数。doi:10.17580/cisisr.2024.02.16