糖尿病是一种普遍且使人衰弱的代谢疾病,其标志性的血糖水平持续升高,如果不受管理,可以在一系列严重的并发症中达到顶峰。类黄酮,源自植物的多酚化学物质,由于其抗糖尿病性质而引起了糖尿病研究领域的广泛关注。这些天然存在的物质是结构上的15碳,在水果,蔬菜和其他植物性饮食中广泛分布,可提供许多积极的好处,包括调节许多胰岛素和葡萄糖稳态的能力。这些化合物根据其结构差异分为六个主要子类。许多体内和体外研究研究了类黄酮的抗糖尿病潜力。已经发现类黄酮可以调节诸如醇葡萄糖苷酶和酰基酶等酶,这是降低血糖水平的关键酶。新兴的证据表明,类黄酮可以通过调节葡萄糖代谢,胰岛素敏感性和炎症的各种细胞信号通路的能力来发挥其抗糖尿病作用。已证明类黄酮含有抗炎和抗氧化特性。这些品质对于减少炎症和氧化应激至关重要,这对于糖尿病的发作至关重要。本综述的目的是考虑到类黄酮抗糖尿病作用的细胞和分子机制的全面阐明,考虑到它们对参与糖尿病涉及的各种代谢途径的潜在影响。
免疫检查点分子阻断剂 ( immune checkpoint blockade , ICB ) 是肿瘤免疫治疗的有效策略之一 , 其中靶向程序 性死亡受体 -1 ( programmed death receptor-1 , PD-1 ) / 程 序性死亡配体 -1 ( programmed death-ligand 1 , PD-L1 ) 的单克隆抗体主要在 TME 中发挥调节免疫细胞功能 的作用。 CD8 + T 细胞是抗肿瘤反应中极具破坏性的 免疫效应细胞群 , 其浸润到 TME 的密度是影响免疫 检查点阻断治疗结果的预测指标 [ 18 ] 。研究表明 , PD- 1/PD-L1 检查点抑制剂与化疗药物联合使用是治疗晚 期非小细胞肺癌的有效方法 , 然而其在肝癌 、 前列腺 癌等实体肿瘤中效果并不理想 [ 19 ] 。为了增强 PD-L1 抗体免疫治疗疗效 , Li 等 [ 20 ] 开发了一种偶联抗 PD- L1 单克隆抗体和负载多西紫杉醇 ( docetaxel , DTX ) 多 功能微泡系统 , 联合超声空化效应增加肿瘤细胞的凋 亡率和 G2-M 阻滞率 , 还可以通过促进 CD8 + T 和 CD4 + T 细胞的增殖 、 降低细胞因子 VEGF 和 TGF-β 的水平来增强抗肿瘤作用。为了提高 PD-L1 抗体在 肝癌中的治疗效果 , Liu 等 [ 21 ] 设计了一种携带 PD-L1 抗体和二氢卟吩 e6 ( chlorin e6 , Ce6 ) 的靶向纳米药物 递送系统 , 该类靶向纳泡可通过 PD-L1 抗体主动靶向 作用 , 促进 Ce6 在肿瘤部位的聚集与释放 , 并通过超 声介导 Ce6 声敏效应促进肿瘤细胞凋亡 、 诱导肿瘤细 胞发生免疫原性死亡 , 同时通过 PD-L1 抗体对 PD- 1/PD-L1 信号通路的阻断促进 CD8 + T 在肿瘤组织中 浸润 , 两者协同发挥抗肿瘤免疫反应。为了增强肿瘤 内部免疫细胞渗透 , Wang 等 [ 22 ] 提出一种将 PD-L1 靶 向的 IL-15 mRNA 纳米疗法和 UTMD 结合的治疗策 略 , 通过声孔效应特异性地将 IL-15mRNA 转染到肿 瘤细胞中 , 激活 IL-15 相关的免疫效应细胞 , 同时阻 断 PD-1/PD-L1 通路 、 诱导免疫原性死亡进而启动强 大的全身免疫反应。 3.3 超声联合载药微泡调节 TME 免疫抑制状态
Bakris,G.,Benson,G.,Brown,F.M.,Freeman,R.,Green,J.,Huang,E.,Isaacs,D.,Kahan,S.,Leon,J.,Lyons,S.K.9。血糖治疗的药理方法:糖尿病的医疗标准-2022。糖尿病护理,45(Suppl 1),S125 – S143。https://doi.org/10.2337/dc22-s009 6。 Blumer I,Hadar E,Hadden Dr等。 糖尿病和怀孕:内分泌社会临床https://doi.org/10.2337/dc22-s009 6。Blumer I,Hadar E,Hadden Dr等。糖尿病和怀孕:内分泌社会临床
由于耐药性的出现,抗疟药物的疗效正在下降。据报道,所有可用的抗疟药物,包括青蒿素,都出现了耐药性,因此对替代药物候选物的需求一直存在。传统的药物发现方法是对大型化合物库进行高通量筛选 (HTS) 以识别新药线索,这种方法耗时且资源密集。虽然虚拟计算机筛选是解决这个问题的一种方法,但模型的泛化并不理想。人工智能 (AI) 利用基于结构或基于配体的方法,在化学性质预测领域表现出高度准确的性能。利用现有数据,AI 将成为盲目搜索 HTS 或基于指纹的虚拟筛选的合适替代方案。AI 模型将学习数据中的模式并帮助有效地搜索命中化合物。在这项工作中,我们引入了 DeepMalaria,这是一种基于深度学习的过程,能够使用化合物的 SMILES 预测其抗恶性疟原虫抑制特性。基于图形的模型在葛兰素史克 (GSK) 数据集中的 13,446 种公开可用的抗疟原虫命中化合物上进行训练,这些化合物目前正用于寻找治疗疟疾的新型候选药物。我们通过预测大环化合物库中的命中化合物和已批准用于重新利用的药物来验证该模型。我们选择了大环化合物,因为这些配体结合结构在疟疾药物发现中尚未得到充分探索。该过程的计算机模拟流程还包括对内部独立数据集的额外验证,该数据集主要由天然产物化合物组成。利用从大型数据集进行的迁移学习来提高深度学习模型的性能。为了验证 DeepMalaria 生成的匹配结果,我们使用了常用的基于 SYBR Green I 荧光测定的表型筛选。DeepMalaria 能够检测到所有具有纳摩尔活性的化合物和 87.5% 的抑制率超过 50% 的化合物。进一步的实验揭示了这些化合物的作用机制,结果表明,其中一种热门化合物 DC-9237 不仅能抑制恶性疟原虫的所有有性阶段,而且是一种速效化合物,这使其成为进一步优化的有力候选者。
图 2 :(A) DZT 与 Dr DXPS 晶体结构(PDBID:2O1X)的顶级对接姿势。通过直接去除共结晶的 ThDP 制备 38 ApoDr DXPS,并在 Mg 2+ 存在下进行对接(本文其他对接操作相同)。(B)DZT 对 Dr DXPS 的抑制模式研究以及 DZT 对 Mt DXPS 和 H304A 突变体的剂量反应曲线。颜色代码:参考条件:紫色;变化的 [ThDP]:绿色;变化的 [PYR]:蓝色;变化的 [ D -GAP]:红色。(C)ThDP 和 DZT 的药效团视图。颜色代码:C 骨架:DZT:浅蓝色;ThDP:洋红色;His304(Dr DXPS):灰色;His296(Mt DXPS):棕色。表面:疏水位点:绿色;亲水位点:红色。(D)Dr DXPS (WT)、Dr DXPS (H304A) 和 Mt DXPS 的动力学表征(见图 S1 中的曲线)。(E)化合物 1 与 Dr DXPS 与 His304 相互作用的顶级对接姿势。(F)化合物 2 与 Dr DXPS 与 H304 相互作用的顶级对接姿势。本文中的所有对接研究均使用软件 LeadIT 44 进行;图 2C 使用 MOE 45 生成;图 2A、2E 和 2F 使用 Poseview 生成。46
抗疟疾耐药性是打击全球疟疾传播的迫切问题。在一项新的研究中,费城儿童医院(CHOP)的研究人员发现了一个关键过程,其中疟疾寄生虫占据了人类血细胞酶,这可以为抗疟疾治疗提供新的方法。这些发现发表在《美国国家科学院》杂志上,提供了有关如何设计药物的新见解,这些药物更有效地治疗受这种毁灭性传染病影响的患者。
抽象的羧基酯前药被广泛用于增加膦酸酯抗生素的口服吸收和效力。前药可以掩盖有问题的化学特征,从而防止细胞摄取,并可能使组织特异性化合物递送。然而,许多羧基酯宣传片被血清酯酶迅速水解,从而限制了它们的治疗潜力。虽然基于羧基酯的前药靶向是可行的,但在微生物中的使用有限,因为尚未描述微生物酯酶特异性的促进性。在这里,我们确定了细菌酯酶,球和FRMB,这些酯酶激活金黄色葡萄球菌中的羧基酯前药。此外,我们确定了FRMB和GLOB的底物特异性,并证明了这些偏好的结构基础。最后,我们建立了人和小鼠血清的羧基酯底物特异性,最终确定了几种可能是耐血清酯酶耐药性和微生物不稳定的宣传片。这些研究将实现抗磷杆菌宣传的结构引导的设计,并扩大分子范围为靶向葡萄球菌病原体。
免疫受体酪氨酸基抑制基序(ITIM)类似于免疫检查点受体PD-1。 我们发现,CD33是乙型肝炎病毒(HBV)的模式识别受体,并产生了使用慢性肝炎患者的PBMC诱导抗HBSAG抗体诱导抗HBSAG抗体,表明SP-1 MAB能够破坏HBV诱导的免疫力。 我们进一步产生了针对CD33的高亲和力人类抗体,发现抗CD33 MAB(SP-2)可以激活小胶质细胞以摄取β-淀粉样蛋白和细胞外的高磷酸化tau蛋白。 Alector/Abbvie已在阿尔茨海默氏病(AD)中发起了I期临床,以确保抗CD33 MAB的安全性,并暗示SP-2抗体具有很大的潜力,可以成为治疗AD的治疗剂。。免疫受体酪氨酸基抑制基序(ITIM)类似于免疫检查点受体PD-1。我们发现,CD33是乙型肝炎病毒(HBV)的模式识别受体,并产生了使用慢性肝炎患者的PBMC诱导抗HBSAG抗体诱导抗HBSAG抗体,表明SP-1 MAB能够破坏HBV诱导的免疫力。我们进一步产生了针对CD33的高亲和力人类抗体,发现抗CD33 MAB(SP-2)可以激活小胶质细胞以摄取β-淀粉样蛋白和细胞外的高磷酸化tau蛋白。Alector/Abbvie已在阿尔茨海默氏病(AD)中发起了I期临床,以确保抗CD33 MAB的安全性,并暗示SP-2抗体具有很大的潜力,可以成为治疗AD的治疗剂。
1英国伦敦大奥蒙德街儿童医院骨髓移植部; 2小儿onco-Hermatology和造血干细胞移植,意大利帕多瓦大学的妇女和儿童健康系; 3英国伦敦伦敦大学儿童健康学院大奥蒙德街儿童健康学院分子和蜂窝免疫学科; 4英国伦敦大奥蒙德街儿童医院血液学系; 5英国布里斯托尔,布里斯托尔血液学和肿瘤学中心布里斯托尔和韦斯顿NHS基金会信托基金; 6英国曼彻斯特皇家曼彻斯特儿童医院的骨髓移植系; 7卡塔尔多哈Sidra Medicine,Sidra Medicine的小儿血液肿瘤学系; 8英国伦敦大学伦敦大学医院血液学; 9英国布里斯托尔皇家儿童医院骨髓移植系; 10小儿肿瘤学和血液学,英国纽约市纽卡斯尔大北部儿童医院;和11个发展生物学与癌症,伦敦大学学院大奥蒙德街儿童健康研究所,伦敦,英国