纳米技术改变了药理学,使我们能够开发出副作用更少、更有效的药物输送系统。本综述旨在概述纳米技术在药物输送方面的最新进展和应用,强调其改善疾病诊断和治疗的潜力。分析了纳米粒子和纳米载体在治疗各种疾病方面的不同应用,将技术与医学相结合,探索先进的输送系统,并在分子水平上了解控制细胞的机制。纳米技术使我们能够开发出副作用更少、更有效的药物输送系统。纳米医学利用纳米技术改善药物向特定器官的输送,使医生能够实现他们所施用药物的最佳有效性和安全性。纳米粒子是纳米技术中用于输送药物和先进治疗的最常用工具之一。这些纳米粒子由于其大小、形状和表面化学性质,会影响身体与药物之间相互作用的各个方面。
促卵泡激素 (FSH) 是哺乳动物生殖的重要调节剂,尤其是对雌性而言。抑制素是性腺中产生的 TGFβ 家族配体,可抑制垂体促性腺激素细胞合成 FSH。抑制素需要辅助受体 betaglycan 或 TGFBR3L 来介导其功能。与对照组相比,促性腺激素特异性 betaglycan 缺失或 Tgfbr3l 整体缺失的雌性小鼠的卵泡发育、排卵卵子数量和产仔数均有所增强。两个辅助受体均被敲除的雌性小鼠(以下称为 dKO)的 FSH 水平、卵巢大小和自然周期排卵卵子数量均显著增加。dKO 卵子具有受精能力,雌性小鼠会怀孕,并且胚胎第 7.5 天 (E7.5) 植入的胚胎数量显著增加。然而,dKO 雌性小鼠不会生下活的后代。到 E10.5 时,dKO 雌性小鼠的胎盘单位重量下降,许多胚胎出现形态异常。到 E14.5 时,dKO 雌性小鼠的大多数胚胎已死亡并被吸收。野生型代孕小鼠在移植对照组或 dKO 雌性小鼠的胚胎后生下活体幼崽。相反,对照组小鼠而非 dKO 雌性小鼠会将野生型胚胎带到足月。这些数据表明 dKO 小鼠的母体环境无法支持成功怀孕。事实上,使用阿那曲唑抑制怀孕的 dKO 雌性小鼠的雌激素产生可增加 E12.5 时的活体胚胎数量,这表明雌激素在怀孕期间升高,不利于胚胎发育。FSH 在妊娠期间也会升高。FSH 和雌激素都与胎盘血管生成有关。我们目前正在研究 E7.5 和 E10.5 时的胎盘单元形态,以确定异常胎盘发育是否可能导致 dKO 女性不孕。这些实验将显示垂体促性腺激素抑制素作用的丧失如何阻碍胚胎存活。
人类药物的非临床测试是为了评估在人类临床试验中研究的化合物的安全性以及新药的营销。尽管安全性评估所需的非临床研究的数量和类型没有确切规定,因为每种新化合物都具有固有的灵活性,但传统方法在各种 FDA 和 ICH 指导文件中都有概述,并且涉及体外测定和整体动物测试方法的组合。科学的最新进展导致出现了许多用于非临床测试的新方法 (NAM),这些方法目前正用于药物开发的各个方面。传统的非临床测试方法可以预测临床结果,尽管鼓励并需要改进这些方法以提高临床结果的可预测性。本文讨论了 FDA/CDER 对在药物开发中使用 NAM 的机会和挑战的看法,尤其是出于监管目的,还包括 NAM 目前用于非临床安全性评估以及它们可能补充和/或增强当前测试方法的示例。 FDA/CDER还鼓励与利益相关者就NAM进行沟通,并致力于探索使用NAM来提高监管效率并可能加快药物开发。
基因工程与药理学研究的结合正在改变精准医疗的格局,并有可能彻底改变医疗保健。精准医疗侧重于根据遗传、环境和生活方式因素为个人量身定制治疗方案,超越了传统的“一刀切”方法。本社论强调了基因工程在推动精准医疗方面的关键作用,探索了其在药物发现、药物基因组学以及基因和细胞治疗等创新疗法中的应用。CRISPR-Cas9 等工具和组学技术的进步加速了个性化疗法的发展,增强了我们对疾病机制的理解。尽管取得了这些突破,但挑战依然存在。必须解决技术障碍,如脱靶效应、围绕生殖系编辑的伦理问题以及这些技术的高成本。然而,机遇比比皆是——从人工智能驱动的创新到合作研究计划,这些计划有望简化基因工程应用的开发。学科的融合不仅重塑了药物开发,而且还扩大了治疗武器库以应对复杂疾病。通过持续的投资、跨学科合作和对公平获取的重视,精准医疗的承诺(根据每个人的基因蓝图量身定制的治疗)正在迅速成为现实。© 2025 Hossen MM。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可证(www.creativecommons.org/licenses/by/4.0)分发,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。
周一 9/9 受体酪氨酸激酶:致癌基因/信号通路 领域 周三 9/11 受体酪氨酸激酶:细胞骨架和细胞凋亡 领域 周四 9/12 受体酪氨酸激酶:技术 领域 周一 9/16 蛋白质结构及其在药物设计中的作用 Moiseenkova-Bell 周二 9/17 离子通道 1 Moiseenkova-Bell 周三 9/18 受体结构阅读 Moiseenkova-Bell 周四 9/19 无课 SPATT 静修/宾夕法尼亚大学博物馆 周一 9/23 Fuentes 的抗生素发现人工智能 周一 9/23 下午 5 点通过 ZOOM:基于结构的药物设计 Katrich 周三 9/25 受体酪氨酸激酶:翻译 领域 周四 9/26 精选阅读 领域 周一 9/30 受体酪氨酸激酶:问题集到期现场周二 10/1 脂质信号:花生四烯酸代谢物 Ricciotti 周三 10/2 脂质信号:花生四烯酸代谢物 Ricciotti 周四 10/3 脂质信号:选定的阅读材料与复习 Ricciotti 周一 10/7 复习:7-TM 受体、RTKs 脂质介质、通道迄今为止的讲座周三 10/9 没有课程周四 10/11 考试:(上午 8:30 至上午 11:30)
DSM-5使用一种诊断方法,代表人格障碍的分类观点。 div>这项工作的目的是描述DSM-5中描述的不同类别人格障碍类别的药理治疗。 div>一般而言,研究表明人格障碍药理治疗的功效有限,因此应优先考虑心理社会管理。 div>在管理每种类型的人格障碍的研究量上是显着的差异,这是在这方面具有最大科学文献的边缘性人格障碍。 div>在这种疾病中,药理学测试表明药物是最好的补充,必须最小化。 div>对于其他人格障碍,例如自恋,历史性和属于C组的人,文学的数量相当稀少。 div>尽管某些类型的药物在某些症状学治疗某些症状的有效性的证据较弱,但使用它们时必须谨慎,因为有必要复制或扩展研究。 div>
Christodoulou Nikos精神病医生,Thessaly大学医学院副教授,Larissa大学医院精神病学诊所主任,护理博士,预防精神病学系主任
Ippia Javanica(Burm。 f。)是一种非洲植物,具有多种民族医学用途,包括哮喘,结核病,感冒,流感,肺炎,咳嗽和皮肤炎。 此后,许多关于植物的民族医学特性和民俗性主张已通过许多科学研究建立。 在这种情况下,我们对L. javanica的植物化学和药理学的科学文献进行了文献计量和系统分析,特别关注该植物的生物活性代谢物。 文献计量数据 - 使用科学和Scopus数据库 - 显示大多数关于L. javanica的研究都是在非洲进行的,南非占总产出的50%以上。 但是,近年来,该研究领域的增长相对较慢。 此外,批判性分析强调了植物的各种原油提取物的药理活性,还确定了40多种新代谢产物及其生物活性。 在列举的生物活性剂与植物的潜在用途之间建立了治疗关系,以治疗细菌和病毒感染,神经退行性疾病,肿瘤和糖尿病。 总的来说,尽管该植物及其在药物研发中的代谢产生了巨大的潜力,但在这方面,它仍然尚未探索。 可以预见,本次评论的信息将促进并绘制一门课程,以供将来调查L. Javanica的药物使用。Ippia Javanica(Burm。f。)是一种非洲植物,具有多种民族医学用途,包括哮喘,结核病,感冒,流感,肺炎,咳嗽和皮肤炎。此后,许多关于植物的民族医学特性和民俗性主张已通过许多科学研究建立。在这种情况下,我们对L. javanica的植物化学和药理学的科学文献进行了文献计量和系统分析,特别关注该植物的生物活性代谢物。文献计量数据 - 使用科学和Scopus数据库 - 显示大多数关于L. javanica的研究都是在非洲进行的,南非占总产出的50%以上。但是,近年来,该研究领域的增长相对较慢。此外,批判性分析强调了植物的各种原油提取物的药理活性,还确定了40多种新代谢产物及其生物活性。在列举的生物活性剂与植物的潜在用途之间建立了治疗关系,以治疗细菌和病毒感染,神经退行性疾病,肿瘤和糖尿病。总的来说,尽管该植物及其在药物研发中的代谢产生了巨大的潜力,但在这方面,它仍然尚未探索。可以预见,本次评论的信息将促进并绘制一门课程,以供将来调查L. Javanica的药物使用。
此外,KSCPT已做出了各种努力,以增强和提高临床试验并建立先进的临床研究环境。KSCPT于1995年10月参与了韩国良好临床实践(KGCP)的出版,使韩国成为亚洲第二个国家,仅次于日本,以实施良好的临床实践(GCP)。KSCPT还积极促进了2001年KGCP修订以管理全球标准的临床试验。从1993年开始,KSCPT鼓励韩国的主要大学医院建立机构审查委员会(IRB),并开始了IRB审查临床研究,从而提高了人们对临床研究伦理的认识。通过持续的教育,KSCPT提高了IRB的标准,并为IRB操作的标准化做出了贡献。KSCPT在2002年韩国IRB的建立中发挥了至关重要的作用,Sang-Goo Shin教授担任其第一任总统[4]。