源自生物质废物资源的硬碳(例如燕麦片,稻壳,甘蔗渣,香蕉皮,花生贝壳,苹果Pomace和Corncob)受到了广泛的关注,这是由于可逆的能力以及成本和可持续性考虑因素。[6–12]碳化后生物质的自然微观结构保留在碳化后,提供大量的缺陷和毛孔以及随机取向的假含量结构域。[13]固有的通道和孔创建了相互联系的3D结构,可改善电解质渗透,并提供更多的钠途径和离子缓冲库。[14]此外,一些剩余的杂原子(N,S,P等)可以通过直接的电动积极共价键或引入发起电子受体状态的碳空位缺陷来提供更多的存储位点。[15]
1 研究与创新中心,Fondazione Edmund Mach,Via E. Mach 1, 38098 San Michele all'Adige,意大利;carlotta.pirrello@unipd.it(CP);giulia.malacarne@fmach.it(GM);marco.moretto@fmach.it(MM);lenzi.luisa@gmail.com(LL);michele.perazzolli@fmach.it(MP);stefania.pilati@fmach.it(SP); claudio.moser@fmach.it (CM) 2 乌迪内大学农业、食品、环境与动物科学系,Via delle Scienze 206, 33100 Udine, 意大利 3 特伦托大学农业食品环境中心(C3A),Via E. Mach 1, 38098 San Michele all'Adige,意大利 4 SciENZA Biotechnologies BV,Sciencepark 904, 1098 XH Amsterdam,荷兰;T.Zeilmaker@enzazaden.nl 5 植物-微生物相互作用,乌得勒支大学生物学系,Padualaan 8, 3584 CH Utrecht,荷兰; g.vandenackerveken@uu.nl * 通讯地址:lisa.giacomelli@fmach.it † 现地址:意大利帕多瓦大学农学、食品、自然资源、动物和环境系,Agripolis 校区,V.le dell'Università 16,35020 Legnaro。‡ 这些作者对本研究的贡献相同。
缺水应激是影响植物(尤其是葡萄藤的生理和生长反应)最常见的环境压力之一。然而,葡萄藤品种和物种在对水胁迫的耐受性方面有所不同。为了识别最宽容的葡萄茎,使用了两个因子的阶乘随机块设计。第一个因素包括易感简历。Sultana(V。Vinifera L.)接枝移植到三个砧木(Yaghouti,Kolahdari和140 Ru)上,第二个因素是三个水平的水应力潜力(对照,-1 MPA和-2 MPA)。研究了生理参数,例如丙二醛(MDA),电泄漏(EL),脯氨酸,可溶性糖,蛋白质,光合色素和抗氧化剂。我们的结果表明,增加的水应力增强了H 2 O 2,MDA,EL,脯氨酸,可溶性糖和可溶性蛋白,同时减少叶绿素(CHL)和类胡萝卜素含量,生长参数和植物干重。谷胱甘肽过氧化物酶(GPX)的活性响应缺水而增强,而过氧化杀起酶(CAT)和抗坏血酸酯过氧化物酶(APX)酶在-1 MPa时表现出较高的活性,然后在最低水位(-2 MPA)下降低。此外,暴露于水胁迫的140个RU砧木具有较低水平的MDA,H 2 O 2和EL,更高的Chl(A,B),类胡萝卜素,APX和GPX活性以及较高的芽干重。总体而言,这三个砧木的生理和形态反应提出,将商业苏丹娜品种嫁接到耐旱的砧木上,例如140 RU,是提高干旱胁迫耐受性的有效策略。
• 获取并发展对主要宗教和世界观的知识和理解。 • 了解信仰、价值观和传统对个人、社区、社会和文化的影响,从地方到全球。 • 参考主要宗教和世界观的教义,培养对宗教和道德问题做出合理和知情判断的能力。 • 促进他们的精神、道德、社会和文化发展; • 培养对持有不同观点和信仰的其他人的尊重态度,并愿意生活在一个观点和信仰多元化的社会中。 • 用讨论和主题适当的词汇谈论、倾听、提问和回答话题 • 使用各种来源了解更多有关世界宗教的信息; • 访客/访问和其他第一手体验让学习变得生动有趣;
从被动式近端传感器过渡到主动式近端传感器。主动式传感器不依赖自然阳光的反射,而是测量作物调制光的反射,因此它们可以在所有照明条件下工作。本研究比较了主动式和被动式冠层传感器在预测梅洛葡萄园 25-32 个随机选择位置的生物量产量方面的潜力。两种传感器都提供了从转色期冠层最低点视角估计的归一化差异植被指数 (NDVI),这是修剪重量的良好预测指标。尽管被动传感器的红色 NDVI 更多地解释了生物量的变化(R 2 = 0.82),但它与修剪重量的关系是非线性的,最好用二次回归来描述(NDVI = 0.55 ?0.50 wt - 0.21 wt 2 )。在高生物量条件下,无法验证琥珀色 NDVI-生物量关系理论上更大的线性度。与叶片中稳定同位素含量(13 C 和 15 N)的线性相关性提供了证据表明,冠层反射率检测到了由于缺水和肥料氮吸收有限而导致的植物压力。因此,这些移动传感器提供的冠层反射率数据可用于改善葡萄园的特定地点管理实践。
葡萄树和其他多年生木本植物一样,一直被认为是一种难以生产转基因植物的作物。由于生产转基因和/或编辑植物需要能够从转化组织再生植物,因此这一步骤通常是该过程中最大的瓶颈。本研究的目的是回顾葡萄树转化和再生改进的最新技术和策略,重点关注三个方面:(i)与葡萄树转化相关的问题;(ii)促进葡萄树再生的基因;(iii)基因传递载体。关于第一个方面,有充分的证据表明,获得转基因植物成功率低的主要因素之一是再生过程。转基因整合到受体细胞后,需要进行组织培养以从转化细胞再生转基因幼苗。这个过程很耗时,通常需要在培养基中添加对环境有害的试剂(抗生素和除草剂)来选择转基因植物。另一方面,可以使用诸如所谓的发育调节剂 (DR) 之类的基因的表达来诱导特定的发育程序,从而避免使用传统的组织培养方法。在体细胞中异位表达特定组合的 DR 有可能在包括葡萄在内的多种作物中诱导从头分生组织。据报道,通过在体组织中对植物分生组织进行从头重编程,可以成功进行基因组编辑。此外,研究表明,某些转录因子的表达可以提高小麦、柑橘和水稻的再生效率。最后,最近的报告显示,使用纳米粒子(例如碳点 (CD))作为农杆菌和基因枪介导的植物遗传转化的有吸引力的替代品。通过这种方式,可以避免在培养基中使用抗生素,从而克服植物组织活力的丧失并加速再生过程。研究表明,CD 可作为载体将质粒运送到植物细胞中,在多种作物中实现瞬时转化,而不会对光合作用或生长产生负面影响。基于这些进展,有可能将这些新的可用策略和技术结合起来,以克服葡萄树等物种和其他被认为难以生长的作物的再生问题。
此外,还感谢希腊农业组织 DIMITRA 橄榄、亚热带植物和葡萄树研究所 (IELYA) 的葡萄树部门提供空间和设备来开展葡萄品种学和分子分析,以及先生们。希腊农业组织 DIMITRA 的 TA/ILEYA 指定研究员 George Mercouropoulos 博士对本研究分析的葡萄样本的基因鉴定提供了宝贵的科学指导以及他的建议和监督,希腊农业组织 DIMITRA 的 TA/ILEYA 指定研究员 Dimitris Taskos 博士在本工作进行的葡萄栽培研究期间提供了宝贵的帮助。
摘要 12 葡萄的驯化过程促进了所需性状的固定。与有性生殖相比,通过扦插进行葡萄的无性繁殖更容易保存这些基因型。尽管如此,即使是无性繁殖,由于基因组中潜在的遗传体细胞突变,同一葡萄园内也常常会出现不同的表型。然而,这些突变并不是影响表型的唯一因素。除了体细胞变异外,表观遗传变异也被认为是调节驯化过程中获得的表型变异的关键因素。这些表观等位基因的出现可能对葡萄的驯化产生了显著影响。本研究旨在调查驯化过程对栽培葡萄甲基化模式的影响。对栽培和野生种质进行了低代表性亚硫酸盐测序。结果显示,栽培葡萄 24 的甲基化水平高于野生葡萄。野生和栽培葡萄之间的差异甲基化分析共鉴定出 9955 26 个差异甲基化胞嘧啶,其中 78% 在栽培葡萄中高甲基化。功能分析表明,核心甲基化基因(在野生和栽培种质中持续甲基化的基因)与应激反应和萜类/异戊二烯类代谢过程有关。而呈现差异甲基化的基因与靶向过氧化物酶体的蛋白质、乙烯 31 调节、组蛋白修饰和防御反应有关。此外,我们的研究结果 32 表明,环境诱导的 DNA 甲基化模式至少部分受野生葡萄种质的原产地引导。总的来说,我们的研究结果 34 揭示了表观等位基因在葡萄驯化历史中可能发挥的关键作用。36
种类葡萄葡萄(常见的葡萄)分为两个子种:Vitis Vinifera subsp。vinifera(培养的葡萄)和Vitis Vinifera subsp。sylvestris(野葡萄)。Vitis Vinifera subsp。Vinifera广泛用于餐桌水果,并作为生产与葡萄相关饮料的主要来源,包括葡萄酒和醋。野葡萄(Vitis Vinifera subsp。sylvestris)引起了人们的极大兴趣,因为它们被认为是培养品种的祖细胞,并且是一般理解葡萄树驯化过程的关键。为了解锁葡萄藤驯化的分子机制,基于基因组的研究被广泛进行。在这项研究中,两个格鲁吉亚野生葡萄树样品的完整叶绿体基因组受到光照射测序和计算机基因组组装,然后进行基因注释。根据结果,每个分析的叶绿体基因组的长度为160.928 bp,共有128个基因(83个蛋白质编码,37个tRNA,8 rRNA),属于遗传上独特的“ rkatsiteli'rkatsiteli'haplotype(AAA)。一项比较基因组研究揭示了叶绿体基因组中某些插入和SNP的存在。
葡萄藤构成了构成其微生物组的各种微生物。酿酒师已经使用了居住在葡萄树的微生物数百年来,尽管现代葡萄酒生产商经常依靠接种的微生物,例如酿酒酵母。在澳大利亚葡萄酒行业中,有一种恢复使用微生物组进行葡萄酒发酵的运动。随着对葡萄藤微生物组在葡萄疾病,发酵和随后的葡萄酒感官特征方面的作用的了解的提高,微生物世界提供了一种新的复杂程度,可用于酿酒。为了开发和维护所需的葡萄园微生物多样性,需要进行广泛的微生物监测。在这里,我们讨论了可活力选择染料的利用,以区分生物和与宿主相关的微生物以及非生存来源产生的遗物信号。