生物技术育种方法应用于木本植物的主要瓶颈是由于几种基因型表现出的体外再生困难。另一方面,木本植物,尤其是葡萄树(Vitis vinifera L.),使用大部分农药和其他昂贵的农业投入,因此开发有效的遗传改良方法迫在眉睫。基因组编辑是一种非常有前途的技术,特别是对于酿酒葡萄基因型,因为它允许在一个步骤中修改所需的基因,保留在优良品种中选定和重视的所有品质性状。本文报道了一种用于生产无转基因葡萄植物的基因组编辑和再生方案,利用脂质转染胺介导的 CRISPR - Cas9 核糖核蛋白(RNP)直接递送以靶向八氢番茄红素去饱和酶基因。我们重点研究了内比奥罗 (V. vinifera),这是一种极难在体外生长的葡萄酒基因型,可用来生产优质葡萄酒,例如巴罗洛和巴巴莱斯科。文献中提供的用于高度胚胎发生的葡萄树基因型的 PEG 介导的编辑方法无法使难生长的内比奥罗获得正常的胚胎发育。相反,脂质转染剂对原生质体活力和植物再生没有负面影响,转染后约 5 个月即可获得完全发育的编辑植物。我们的工作是使用脂质转染剂在植物原生质体中递送编辑试剂的首批例子之一。在酿酒葡萄基因型育种方面取得的重要成果可以扩展到其他重要的酿酒葡萄品种和难生长的木本植物。
摘要:本文使用机器人技术和基于视觉的反馈控制,解决了葡萄树修剪的挑战,这是农业中至关重要且艰苦的农业任务。由于3D姿势估计和特征提取方面的挑战,藤蔓的复杂结构使视觉致密暗销。是基于迭代最接近点(ICP)点云对准和基于位置的视觉伺服伺服(PBV)的组合,提出了一种基于视觉的藤蔓修剪的新方法。在藤蔓修剪的PBV中比较了四个ICP变体:标准ICP,Levenberg – Marquardt ICP,点对平面ICP和对称ICP。该方法包括一个专用的ICP初始猜测,以提高对齐速度和准确性,以及在修剪位置生成参考点云的过程。实时实验是在配备了立体相机的Franka Emika操纵器上进行的,涉及在实验室条件下的三个真实葡萄藤。
释放乙烯的物质。条件和作用部位。VIS 19:308-316。 13。 9。 Koblet,W。1977。 葡萄藤中照片合成的易位,p。 45-51。 in:P。Huglin(编辑)。 proc。 inti。 sammp。 质量14。年份。 南非开普敦。 10。 Lavee,S。1982。 使用释放15的乙烯对葡萄树的生长和发育的控制。 126-131。 in:A.D。Webb(ed。)。 proc。 UCD葡萄和葡萄酒百年纪念症状,大学。 16。伯克利加利福尼亚出版社。 11。 Marini,R.P。 1986。 叶面AP-17之后的“雷德哈文”桃树的生长和种植。 J. Amer。 Soc。 hort。 SCI。 111:849-853。 12。 Mattick,L.R。 1983。 一种用于总酸,18。钾和个体酸分析的葡萄浆果的方法。VIS 19:308-316。13。9。Koblet,W。1977。葡萄藤中照片合成的易位,p。 45-51。in:P。Huglin(编辑)。proc。inti。sammp。质量14。年份。南非开普敦。 10。 Lavee,S。1982。 使用释放15的乙烯对葡萄树的生长和发育的控制。 126-131。 in:A.D。Webb(ed。)。 proc。 UCD葡萄和葡萄酒百年纪念症状,大学。 16。伯克利加利福尼亚出版社。 11。 Marini,R.P。 1986。 叶面AP-17之后的“雷德哈文”桃树的生长和种植。 J. Amer。 Soc。 hort。 SCI。 111:849-853。 12。 Mattick,L.R。 1983。 一种用于总酸,18。钾和个体酸分析的葡萄浆果的方法。南非开普敦。10。Lavee,S。1982。使用释放15的乙烯对葡萄树的生长和发育的控制。 126-131。in:A.D。Webb(ed。)。proc。UCD葡萄和葡萄酒百年纪念症状,大学。16。伯克利加利福尼亚出版社。11。Marini,R.P。1986。叶面AP-17之后的“雷德哈文”桃树的生长和种植。J. Amer。 Soc。 hort。 SCI。 111:849-853。 12。 Mattick,L.R。 1983。 一种用于总酸,18。钾和个体酸分析的葡萄浆果的方法。J. Amer。Soc。hort。SCI。 111:849-853。 12。 Mattick,L.R。 1983。 一种用于总酸,18。钾和个体酸分析的葡萄浆果的方法。SCI。111:849-853。 12。 Mattick,L.R。 1983。 一种用于总酸,18。钾和个体酸分析的葡萄浆果的方法。111:849-853。12。Mattick,L.R。 1983。 一种用于总酸,18。钾和个体酸分析的葡萄浆果的方法。Mattick,L.R。1983。一种用于总酸,18。钾和个体酸分析的葡萄浆果的方法。
摘要:Vitis Vinifera是一种具有经济意义的葡萄藤,以葡萄酒,果汁和餐桌生产而闻名。葡萄酒的浆果拥有各种各样的微生物,影响了葡萄树健康和酿酒过程。象征性的品种Assyrtiko是希腊土著,以高质量的白葡萄酒而闻名,起源于Santorini,并传播到各种希腊地区。尽管现有关于几种品种的微生物群的研究,但Assyrtiko Grapes的碎菌菌群仍未开发。因此,我们进行了一项时空元基因组学研究,以鉴定阿西托科葡萄的附生微生物群落组成。这项研究是在希腊三个不同且不同的葡萄栽培区域(Attica,Thessaloniki,Evros)的连续两个年份(2019年和2020年)中进行的。我们进行了扩增子测序,针对细菌及其真菌区域的16S rRNA基因,随后进行了全面的生物信息学分析。我们的数据表明,Assyrtiko品种的附生层层层微生物群落的分布和相对丰度均由复古和生物地理学塑造。
讨论,局限性和未来研究的途径该模型的准确性取决于输入数据,尤其是SWHC估计和草覆盖效果。SWHC主要取决于固有的土壤特征,例如纹理和粗元素的百分比,这超出了种植者的控制。然而,这也取决于葡萄树生根深度,生产者可以通过适当的植入土壤制备或使用剧烈的砧木来修改。草皮的百分比是所研究的草皮最简单的适应性参数。种植者可以每年甚至在一个季节内调整它,具体取决于复古的气候条件,从而对高度调节的葡萄道水缺乏作用。这种建模练习没有考虑到这种管理实践,也没有选择草覆盖物种及其干燥,所有这些都会显着影响土壤蒸发并覆盖作物蒸散量,从而弥补葡萄藤缺水的水平。
CRISPR-Cas 技术可以对植物基因组进行精确修改,有望彻底改变农业。这些技术依赖于将编辑组件递送到植物细胞中以及再生完全编辑的植物。在无性繁殖植物(例如葡萄)中,原生质体培养是生产非嵌合和无转基因的基因组编辑植物的最佳途径之一。然而,植物从原生质体再生能力较差,阻碍了其用于基因组编辑的实施。在这里,我们报告了一种从来自多个葡萄品种的原生质体再生植物的有效方案。通过将原生质体封装在海藻酸钙珠中并与饲养层培养物共培养,原生质体分裂形成愈伤组织菌落,再生成胚胎并最终再生为植物。该方案成功应用于酿酒葡萄和鲜食葡萄(Vitis vinifera)品种,以及葡萄砧木和葡萄树野生近缘种 Vitis arizonica。此外,通过用 CRISPR-质粒或核糖核蛋白 (RNP) 复合物转染原生质体,我们在三个品种和 V. arizonica 中再生了 VvPHYTOENE DESATURASE 基因经过编辑的白化植物。结果揭示了该平台在促进葡萄属物种基因组编辑方面的潜力。
土壤:冲积/沙土,含海洋上新世沉积物和鹅卵石,东北朝向 海拔:300 米(985 英尺) 葡萄树年龄:1950 年首次种植,1990 年再次种植,1 万株/公顷。28 个 Massal 无性系(4 个根瘤蚜虫病前)- 精选 Massale(又名 Massal Selection)是法国葡萄酒种植术语,指用来自同一片土地的优质老藤的插枝重新种植新葡萄园的做法。 酿酒:10 月中旬手工采摘。 发酵:使用天然酵母,在可控温的不锈钢大桶中发酵。 浸渍:40 天(20 天,浸没盖子)自然苹果酸乳酸发酵。 陈酿:+5 年,在法国橡木桶和 Botti(20Hl)中陈酿,再加上至少 24 个月的瓶内陈酿。产量:35/40 公升/公顷 品酒笔记:Poggio ai Chiari 是一款展现托斯卡纳桑娇维塞典型优雅的葡萄酒,葡萄园所在的特定地点,以及精心的酿酒工艺使这款葡萄酒精致优雅,能够陈酿多年,不断改进并获得罕见的复杂香气。随着时间的推移,红色水果的典型香气通过一系列第三级香气变得更加复杂,例如香料、皮革、肉桂和肉豆蔻,这些香气支撑着罕见优雅的口感,其中的单宁质地表现出一种丝滑感,这种质感只有来自非常适合葡萄种植的地区(例如 Chiusi 的 Santa Mustiola 地区)的优质红葡萄酒才具有这种质感。生产商信息
气候变化给葡萄栽培带来了许多威胁。人们已经制定了不同的策略来减轻这些影响,从创新的葡萄园管理方法和精准葡萄栽培到培育更适应环境挑战的新品种和砧木。表观遗传学是指基因组功能的可遗传变化,不受 DNA 序列变异的影响。最近发现表观遗传记忆可以介导植物对环境的适应和适应,这为应对气候变化的植物改良提供了新的杠杆,而不会对遗传信息产生重大影响。这可以通过使用压力的表观遗传记忆和/或通过在不改变遗传信息的情况下以新的表观等位基因的形式创造表观遗传多样性来实现。事实上,葡萄藤是一种多年生嫁接克隆繁殖植物,因此具有表观遗传特异性。这些特异性需要已经在模型植物中开发的适应策略,但也提供了探索表观遗传记忆和多样性如何成为具有类似特性的植物快速适应环境的主要来源的机会。在这些策略中,使用不同类型的诱导剂进行一年一次和一年一次的植物启动可能提供有效的方式来更好地应对(非)生物胁迫。利用接穗和砧木之间的表观遗传交换和/或在基因组范围内创造非靶向表观遗传变异,或使用表观遗传编辑进行靶向变异,可能为葡萄树改良提供创新且有希望的途径,以应对气候变化带来的挑战。
摘要 随着成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 系统的出现,植物基因组编辑进入了对任何感兴趣的基因进行稳健而精确编辑的新时代。各种 CRISPR/Cas 工具包的开发使新的基因组编辑结果成为可能,这些结果不仅可以针对插入/缺失突变,还可以实现碱基编辑和主要编辑。CRISPR/Cas 工具包的应用迅速促进了经济重要物种的育种和作物改良。CRISPR/Cas 工具包还已应用于多种树种,包括苹果、竹子、大麻科、木薯、柑橘、可可树、咖啡树、葡萄树、猕猴桃、梨、石榴、杨树、拉坦乔伊特树和橡胶树。对这些物种的编辑应用已导致与生长、次生代谢以及抗逆和抗病性相关的关键基因的重大发现。然而,目前对树种的研究大多只涉及编辑技术的初步优化,对基于CRISPR/Cas的树种编辑技术进行更深入的研究,有望迅速加速树种育种和性状改良。此外,树种基因组编辑仍然主要依赖于基于Cas9的插入/缺失突变和农杆菌介导的稳定转化。瞬时转化是无转基因基因组编辑的首选,但在树种中效率通常很低,大大限制了其潜在应用。本文总结了使用CRISPR/Cas系统进行树种基因组编辑的现状,并讨论了阻碍CRISPR/Cas工具包有效应用于树种基因组编辑的局限性以及未来的前景。
摘要葡萄(Vitis Vinifera)是世界上最重要的水果作物之一,遭受了白粉病的产量损失,这是由Erysiphe Necator引起的主要真菌疾病。除了抑制宿主免疫外,植物病原体还调节宿主蛋白所称为易感性因素以促进其在植物中的增殖。在这项研究中,CRISPR/CAS9(群集定期间隔短的短文重复序列/CRISPR相关9)技术用于使MLO的靶向诱变(霉菌抗性基因座O)家族基因被认为是粉状霉菌真菌的S因子。在两个或两个葡萄树Mlo基因VVMLO3和VVMLO4的等位基因中诱导的小缺失或插入,在粉状霉菌敏感的品种Thompson无生物的转基因植物中。使用不同的CRISPR/CAS9构建体获得的编辑效率从0%到38.5%不等。在获得的20个VVMlo3/4编辑的线中,一个是单个突变的纯合子,三个备有的双重突变,突变中有7个是杂合的,九个是嵌合,嵌合是嵌合,如每个线路中有两个以上突变的等位基因所示。在20个VVMLO3/4编辑的葡萄藤线中,有6条显示出正常的生长,而其余的线则表现出衰老样的氯症和坏死。重要的是,四个VVMLO3编辑线显示出对白粉病的耐药性,这与宿主细胞死亡,细胞壁的伴侣(CWA)和H 2 O 2积累有关。综上所述,我们的结果表明,CRISPR/CAS9基因组编辑技术可成功地用于诱导感兴趣基因的靶向突变,以提高经济重要性的特征,例如葡萄藤中的抗病性。