在这项工作中,碳化硅(SIC)涂层通过脉冲化学蒸气沉积(CVD)成功生长。未在连续流中提供四氯化硅(SICL 4)和乙烯(C 2 H 4),而是以H 2作为载体和清除气体交替脉冲到生长室中。典型的脉冲CVD循环为SICL 4脉冲 - H 2净化 - C 2 H 4脉冲 - H 2吹扫。这导致了超符号SIC涂层的生长,在相似的过程条件下,使用恒定的流动CVD工艺无法获得。我们通过脉冲CVD提出了一个两步的SIC生长框架。在SICL 4脉冲期间,沉积了一层Si。在以下C 2 H 4脉冲中,该Si层被渗入,并形成SIC。据信SICL 4脉冲后,高氯表面覆盖范围可以通过生长抑制作用来实现超级生长。
Niobate锂是其具有挑战性的功能性能的特殊材料,可以适合各种应用。然而,到目前为止,在蓝宝石底物上生长的高品质200毫米li x nb 1-x o 3薄片迄今为止从未报道过这限制了这些潜在应用。本文报告了蓝宝石(001)底物在组合构造中通过化学梁蒸气沉积在蓝宝石(001)底物上对高质量的薄膜沉积的有效优化。使用此技术,LI/NB的流量比可以从单个晶圆上调整≈0.25至≈2.45。在膜的胶片(不同阳离子比)的不同区域进行了各种互补特征(通过不同的效果,显微镜和光谱技术),以研究阳离子化写计数器对纤维属性的影响。接近阳离子化学计量学(Linbo 3),外延纤维具有高质量(尽管有两个平面域,但低镶嵌性为0.04°,低表面粗糙度,折射率和带隙接近散装值)。偏离化学计量条件,检测到次级相(富含NB的流动比的Linb 3 O 8,Li 3 NBO 4具有部分非晶化的Li-foW流比)。linbo 3薄膜对于数据通信中的各种关键应用程序都具有很高的兴趣。
由于公众对可持续性的推动,纸电子产品的兴起已经加速。电子废物。在本报告中,可以证明导电聚合物聚(3,4-乙二醇氧噻吩)(PEDOT),多吡咯和聚噻吩可以通过丝网印刷与纸张底物上的蒸气相聚合结合并进一步掺入功能性电子成分来合成。高模式分辨率(100μm),PEDOT显示出令人印象深刻的板电阻值。PEDOT作为导电电路并在全印刷的电致色素显示器中作为导电电路。导电聚合物电路允许发射功能发光二极管,而电致色素显示器可与使用PEDOT在塑料底物上使用PEDOT相当。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
摘要:密集的均匀纳米复合材料Tisicn涂层,其厚度高达15微米,硬度为42 GPa,通过在AR + C 2 H 2 + N 2 -GAS混合物中与Hexamethyld -iSlyld -iSlyld -iSlyld -iSILASEANE(HMDS)混合物中的空心阴极排放中的反应性钛蒸发方法获得了高达42 GPA的硬度。对等离子体组成的分析表明,该方法允许气体混合物所有成分的激活程度的广泛变化,可提供高(高达20 mA/cm 2)的离子电流密度。可以通过改变蒸气– GAS混合物的压力,组成和激活程度,可以广泛改变该方法获得的化学成分,微结构,沉积速率和性能。将C 2 H 2,N 2,HMD和排放电流的频率增加导致涂层形成速率的增加。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。
这项工作是Argonne国家实验室(ANL),劳伦斯·伯克利国家实验室(LBNL),国家可再生能源实验室(NREL),橡树岭国家实验室(ORNL),西北太平洋国家实验室(Oak Ridge National Laboratory),西北国家实验室(PNNL),美国桑迪亚国家实验室的国家实验室(NREL)。 div>uu div>合同号HSFE02-20-IRWA-0011。 div>资金由美国联邦急诊室提供。uu div>在能源部网络的动员办公室技术管理下进行。 div>此处表达的意见不一定代表能源部,FEM或美国政府的意见。uu div>美国政府保留非排他性,有偿,不可撤销和世界许可,以出版或复制这项工作的已发表形式,或者允许其他人出于美国政府的目的。
2.0 2022 年 2 月 使用《国家感染预防和控制手册》 (NIPCM) 方法审查有关空气过氧化氢净化系统的现有科学证据。添加了新建议。
摘要在这项研究中,提出了对低热稳定性临时粘合胶的优化对物理蒸气沉积(PVD)过程的优化。在各种底物上证明了Cu种子层在通过沟渠中的沉积:硅 - 硅粘合,硅玻璃键合和霉菌键合的底物。在处理过程中记录在这些底物上的表面温度远低于临时键合和去键(TBDB)材料的临界温度。本文重点介绍了PVD工艺的2.5D/3D集成电路(IC)包装中通过硅VIA(TSV)应用的创新。这些结果将在温度较低的范围明显较低的温度范围内稳健地整合具有低热稳定性的各种临时粘合粘合剂,其热稳定性低。引言临时键合和键合材料在实现薄和超薄晶圆底物的处理方面起着重要的中间作用。它为稀薄的Si Wafers提供结构和机械支撑,用于下游包装。这是因为在下游制造步骤期间,薄且超薄的基材具有高弯曲,折叠和有时断裂的趋势。因此,需要借助临时粘合粘合剂来支撑这些稀薄的底物在载体底物上[1]。这允许晶圆进行进一步的过程步骤,例如光刻,沉积等。设备晶圆通常与临时粘合涂层接触以进行支撑。在PVD过程中,金属靶标通过碰撞的热过程转化为原子颗粒。物理蒸气沉积(PVD)是TSV 2.5D/3D IC包装中铜的随后电化学沉积的关键过程步骤。这是一种以平滑表面,出色的机械性能以及对目标底物的良好粘附而闻名的先进材料处理技术。然后将这些颗粒定向到基板上,以在受控的真空环境中进行后续沉积,成核和生长。原子然后将其凝结成在底物上形成物理薄膜。这可以以两种方式进行:溅射和蒸发。在溅射过程中,将气态前体引入反应室,然后将其加速向目标加速,释放原子尺寸的颗粒以沉积到基板上。溅射技术的主要优点是由于加速
纳米级过渡金属三卡构基化金属元素(TMTC)(例如TIS 3)对基本研究和应用开发都显示出很大的潜力,但是他们的自下而上的合成策略仍应实现。在这里,我们探索了TIS 3的化学蒸气沉积(CVD)合成,其晶格各向异性使B轴的优先生长使矩形纳米片或纳米虫具有具有生长温度可调节的长宽比的矩形纳米片或纳米骨。获得的纳米结构,同时保持光谱和结构特性,如原始的半导体TIS 3的特性,表现出较高的电导率和超低载体激活屏障,这是纳米级导体。我们的实验和计算结果表明,CVD生长的TIS 3中存在S 2 2-空缺,导致重型N型掺杂到退化水平。此外,预计将半导体特性通过从环境中用氧原子钝化S 2 2-空位来恢复。这项工作因此预示着使用缺陷工程的三卡氏菌元素半导体构建纳米级电子的诱人可能性。
随着芯片结构系统的功率需求不断增长,由于其低功率泄漏,超薄体越来越重要。硅启动器(SOI)技术用于制造此类超薄平台。但是,当代的SOI过程和晶圆本身是复杂而又是典型的。在这项研究中,我们开发了一种简单的SOI制造工艺,可以使用商业实施的减少压力化学物质沉积技术在散装硅晶片的任何所需的局部实施。通过硅的选择性外延生长制造了局部SOI,它也可以在用1μm宽的硅种子区和蚀刻剂的蚀刻剂侧面横向生长,尺寸为20×100μm。局部SOI通过化学机械抛光处理至100 nm或更少的厚度,表现出高度结晶状态,这是由横截面成像和衍射模式分析,表面粗糙度分析和广泛的表型分析所确定的。局部SOI在优化的工艺条件下,表现出0.237 nm的表面粗糙度,并保持了与硅晶片相同的完美(100)晶体平面。我们在当前的本地SOI上成功制造了可重新配置的晶体管,这意味着当代硅电子可以在其自己的平台上利用SOI设备。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
