电解质溶剂蒸汽检测解决方案是根据 BESS 的特定特性设计的,包括几何形状、体积、电池类型、空间布局和气流模式。即使单个电池开始排出电解质蒸汽,分布式气体传感器网络也会立即检测到。通过这种方式,BESS 操作员可以最早收到故障指示,并可以进行干预以防止热失控。由于检测器的监视器通过火灾报警控制面板连接到 BMS,它可以自动指示系统立即隔离受影响的电池架,从而遏制火灾威胁。监视器还可以与 BMS 通信,以自动启动通风、增加冷却或触发灭火。由于 BESS 站点通常无人值守且位于偏远地区,这种自动响应可以为 BESS 操作员争取关键的干预时间。
纳米级过渡金属三卡构基化金属元素(TMTC)(例如TIS 3)对基本研究和应用开发都显示出很大的潜力,但是他们的自下而上的合成策略仍应实现。在这里,我们探索了TIS 3的化学蒸气沉积(CVD)合成,其晶格各向异性使B轴的优先生长使矩形纳米片或纳米虫具有具有生长温度可调节的长宽比的矩形纳米片或纳米骨。获得的纳米结构,同时保持光谱和结构特性,如原始的半导体TIS 3的特性,表现出较高的电导率和超低载体激活屏障,这是纳米级导体。我们的实验和计算结果表明,CVD生长的TIS 3中存在S 2 2-空缺,导致重型N型掺杂到退化水平。此外,预计将半导体特性通过从环境中用氧原子钝化S 2 2-空位来恢复。这项工作因此预示着使用缺陷工程的三卡氏菌元素半导体构建纳米级电子的诱人可能性。
引发的化学蒸气沉积(ICVD)代表了一种用于生产聚合物薄膜的新技术,尤其是对于很难通过召开方式处理的材料,例如polytetrafluoroethelene(ptfe,ptfe,commorly com com com com com com com necly neteflon®)。在ICVD过程中,有机前体气体在热表面上热分解以产生单体自由基。这些自由基通过启动和传播步骤聚合,以在底物表面形成所需材料。我们证明了使用ICVD技术在各种底物上创建PTFE表面,从纳米级到宏观”。我们表明,在复杂的几何形状上,涂料可以使涂料变得超薄且高度奇异,从而为从医疗设备到纺织品的应用带来了重大好处。该过程对于大面积和移动的Web底物也非常可扩展,并且由于气体利用率的高效,经济性良好。可以将其扩展到其他材料系统,包括硅酮聚合物及其共聚物,以及结合其他功能,例如环氧基团。在许多商业应用中,包括内陆,医疗设备,纺织品和消费者光学器件都有很大的部署机会。我们将详细讨论沉积过程,以及GVD的商业化计划。
本评论文章的主要重点是检查用于从蒸汽主导的资源中发电的电源周期。它讨论了跨批判性CO 2(T-CO 2)功率周期和兰金周期的现象,这些循环已由许多学者进行了广泛的研究。该文章还使用双元周期,地热发电厂和太阳能辅助发电厂简要探索了基于燃料电池的发电厂。本文介绍了这些植物的发电,热效率,能效和发电效率的信息。调查表明,地热发电厂的热效率从6.5%到16.63%,并且驱动效率从7.95%到82%不等,在199.1 kW到19,448 kW的范围内产生功率。太阳能发电厂生产的电源在550.9 kW至4500 kW之间,能源效率在21.93%至57%之间,并且发电效率在50.5%至64.92%之间。使用NH 3 +H 2 O作为工作流体的燃料电池发电厂从1015 kW到20125 kW,热效率在25.4%至70.3%,并且热效率在12.1%和36%之间。本文在这些情况下强调了卡利纳周期的使用。
摘要:奇妙的洞穴(洞穴)是密苏里州斯普林菲尔德的全国著名旅游胜地。洞穴及其地下水充电区位于相对扁平的伯灵顿 - 基库克石灰岩和污水坑内,而山洞和失去的溪流在充值区域中很丰富。充值区域由厚而复杂的环保区延伸。密苏里州自然资源部(MDNR)在洞穴空气中检测到的TCE(三氯乙烯)浓度的初步监测要高于目标时间加权最大污染物水平(MCL),用于6 µg/m 3的工作场所。tce从未在洞穴财产上使用过; MDNR可信地将TCE归因于距洞穴5.2公里的印刷电路板制造商。工业场所已经关闭了十年,并且已经30年没有出现了可观的TCE出院。数据表明,TCE蒸气正在长时间穿过epikarstic区域,并且蒸气迁移方向季节性地改变了表面和地下温度之间的差异。天然电势和电阻率调查,以识别Epikarst中蒸气井的目标位点,以用于洞穴附近的升级土地。废物场所的常规TCE控制措施未能防止现场迁移,可能会影响很大的地区。简介
继承和与年龄相关的视网膜变性是大量异质疾病的标志,是当今无法治疗的失明的主要原因。遗传因素在视网膜DE世代中起着主要的致病作用,用于单基因疾病(例如色素性视网膜炎)和具有已建立的遗传危险因素(例如与年龄相关的黄斑变性)的复杂疾病。基因分型技术和眼睛成像背面的进展正在完成我们对这些疾病的理解及其在患有视网膜变性的患者流行病中的表现。很明显,无论遗传原因,视网膜疾病中的大多数视力丧失是由于光感受器功能的丧失而导致的。围绕光感受器功能丧失的时间和情况决定了每个患者使用的适当治疗方法。在这种方法中,基因治疗正迅速成为适用于诊所的治疗现实。我们从实验室工作到临床应用的巨大转变是由于我们在疾病遗传和机制,基因递送载体,基因编辑系统以及光感受器功能丧失的补偿策略中所取得的进步。在这里,我们根据患有遗传性视网膜退化的患者人群的需求提供了视网膜基因疗法现有方式及其相关性的概述。
摘要在这项研究中,提出了对低热稳定性临时粘合胶的优化对物理蒸气沉积(PVD)过程的优化。在各种底物上证明了Cu种子层在通过沟渠中的沉积:硅 - 硅粘合,硅玻璃键合和霉菌键合的底物。在处理过程中记录在这些底物上的表面温度远低于临时键合和去键(TBDB)材料的临界温度。本文重点介绍了PVD工艺的2.5D/3D集成电路(IC)包装中通过硅VIA(TSV)应用的创新。这些结果将在温度较低的范围明显较低的温度范围内稳健地整合具有低热稳定性的各种临时粘合粘合剂,其热稳定性低。引言临时键合和键合材料在实现薄和超薄晶圆底物的处理方面起着重要的中间作用。它为稀薄的Si Wafers提供结构和机械支撑,用于下游包装。这是因为在下游制造步骤期间,薄且超薄的基材具有高弯曲,折叠和有时断裂的趋势。因此,需要借助临时粘合粘合剂来支撑这些稀薄的底物在载体底物上[1]。这允许晶圆进行进一步的过程步骤,例如光刻,沉积等。设备晶圆通常与临时粘合涂层接触以进行支撑。在PVD过程中,金属靶标通过碰撞的热过程转化为原子颗粒。物理蒸气沉积(PVD)是TSV 2.5D/3D IC包装中铜的随后电化学沉积的关键过程步骤。这是一种以平滑表面,出色的机械性能以及对目标底物的良好粘附而闻名的先进材料处理技术。然后将这些颗粒定向到基板上,以在受控的真空环境中进行后续沉积,成核和生长。原子然后将其凝结成在底物上形成物理薄膜。这可以以两种方式进行:溅射和蒸发。在溅射过程中,将气态前体引入反应室,然后将其加速向目标加速,释放原子尺寸的颗粒以沉积到基板上。溅射技术的主要优点是由于加速
摘要:果胶气凝胶,密度非常低(约0.1 g cm -3)和高比表面积(高达600 m 2 g -1),是出色的热绝缘材料,因为它们的导热率低于环境条件下的空气(0.025 w m -1 k -1 k -1)。然而,由于其内在亲水性,与水蒸气接触时果胶气凝胶塌陷,失去了超跨性能。在这项工作中,首先制作了果胶气凝胶,并研究了不同过程参数对材料结构和特性的影响。所有纯果胶气凝胶的密度低(0.04-0.11 g cm-1),高比表面积(308–567 m 2 g - 1)和非常低的热电导液(0.015-0.0.023 w m-1 k-1 k-1)。然后,使用不同的反应持续时间(2至24 h),通过甲基三甲氧基硅烷的化学蒸气沉积果胶疏水凝胶。通过在气候腔中进行调节(25℃,80%的相对湿度),记录了疏水性对材料特性的影响,尤其是对热导率的影响。疏水导致与整洁的果胶气凝剂相比,导热率的增加。mTMS沉积16小时有效地在潮湿的环境(接触角115°)和稳定材料特性(0.030 w m -1 k -1)和测试周期为8个月的测试周期中没有波动的材料(0.030 w m -1 k -1),有效地溶出了果胶气凝胶和稳定材料的稳定材料特性。
石墨烯是具有非凡的电子1-5和机械性能的零带隙半学。6由单层碳组成,每个原子在其表面上,石墨烯是纯粹的二维材料,也是用于化学蒸气传感器的理想候选者。据报道,单个气体分子在石墨烯传感器表面的吸收会导致其电阻的可检测变化。7然而,众所周知,典型的纳米光刻过程可以在石墨烯8上留下不受控制的残留物,该残基对设备传输和蒸气感应特性的影响尚未得到充分探索。此外,只能通过使用样品来确定石墨烯对气体蒸气的固有灵敏度,这些样品已经得到了光刻处理中的污染并进行了验证。石墨烯蒸气传感器应像(生物)分子表面修饰(生物)分子表面修饰以控制其化学敏感性一样,就像对碳纳米管9和半导体纳米线菌所做的那样。10他们还应允许对其传感器特性进行定量建模。11