抽象机器人在AI中具有特殊的位置,因为机器人与现实世界相连,并且机器人越来越多地出现在人类的日常环境中,从家里到工业。除了案例外,机器人有望完全取代它们,人类将在很大程度上受益于与此类机器人的实际互动。不仅对于像机器人一样的复杂互动场景,在团队中充当指南,同伴或成员,而且还适用于更具预定义的功能,例如人类或商品的自主运输。越来越多的机器人需要合适的接口才能与人类互动,以使人感到舒适,这考虑了对采取行动的一定透明度的需求。本文描述了以人为中心的机器人技术研发(包括口头和非语言互动,彼此了解和学习)以及如果机器人将在我们的日常环境中包括在内,影响人类生活和社会,必须处理的道德问题。
摘要:栅极绝缘体是决定石墨烯场效应晶体管 (GFET) 性能的最重要因素之一。栅极电压对导电通道的良好静电控制需要较薄的栅极氧化物。由于缺乏悬挂键,通过原子层沉积 (ALD) 工艺生长的栅极介电膜通常需要种子层。种子层可实现介电膜的高质量沉积,但可能导致最终介电膜厚度大幅增加。针对该问题,本文提出了一种改进工艺,在原子层沉积之前使用蚀刻溶液去除自氧化的 Al 2 O 3 种子层,Al 2 O 3 残留物将提供石墨烯表面的成核位点。受益于电介质膜厚度的减小,与使用标准 Al 蒸发种子层方法的 GFET 相比,使用此方法作为顶栅电介质膜沉积工艺的 GFET 的跨导平均增加了 44.7%。
纳米层压膜是由不同材料交替层组成的复合膜 [1]。这些多层纳米结构因能够调整其机械或物理性质以用于各种特定应用而备受关注。例如,在微电子领域,人们考虑将其用作介电绝缘体 [2,3]。事实上,人们现正致力于制备具有高介电常数和良好化学/热稳定性的多组分体系。特别是 Al 2 O 3 -HfO 2 纳米层压膜似乎是最有前途的体系,可用于硅基微电子器件 [4-9] 以及下一代电力电子器件 [10-15]。能够充分利用 Al 2 O 3 和 HfO 2 单一材料的最合适性质,促使人们研究将它们组合成层压体系。实际上,众所周知,Al 2 O 3 具有极其优异的化学稳定性和热稳定性、大的带隙(约 9 eV)、与不同半导体衬底的带偏移大,但其生长会形成高的氧化物陷阱电荷密度,但其介电常数值并不高(约 9)[16]。对于 HfO 2 介电氧化物,虽然可以实现相当高的介电常数值(约 25),但由于其在相对较低的温度(约 500°C)下从非晶态转变为单斜晶态,因此可靠性较低,并且由于其带隙很小(5.5 eV)所以漏电流密度高[16]。在这种情况下,由两种 Al 2 O 3 -HfO 2 高 k 氧化物组成的纳米层状结构是提高热稳定性和维持高介电常数值的有前途的解决方案。
引言:液体电介质和绝缘聚合物是柔性电子器件的组成部分[1]–[4]。此外,微流体与微电子技术的集成为高频电子系统开辟了新的研究和开发领域。例如,过去十年来,许多研究都展示了通过流体调节天线输出频率、辐射方向图和极化的方法[5]–[14]。人们还利用流体研究了微波元件的频率调谐,包括滤波器[15],[16]、移相器[17],[18]、功率分配器[19],[20]和振荡器[21]。尽管前文提到流体电子学方面的研究成果日益增多,但关于用于实现这些系统的各种电介质流体和聚合物化合物的介电常数的公开数据却非常有限。在缺乏此类数据的情况下,研究人员通常依靠在某一频率下收集的介电常数数据来近似其设备在其他频率下的响应。直到最近,才开始出现关于感兴趣的介电流体宽带响应的介电光谱研究[22]。在本文中,我们报告了宽带复介电常数
抽象聚合物纳米复合材料(PNC)由于其在储能,电子,生物传感,药物输送,化妆品和包装行业中的应用而吸引了巨大的科学和技术兴趣。纳米材料(血小板,纤维,球体,晶须,杆)构成了这种PNC。聚合物基质中无机纳米材料的分散程度以及纳米材料的结构化排列是纳米复合材料总体性能的一些关键因素。为此,纳米材料的表面功能化决定了其在聚合物基质中的分散状态。用于储能和电子产品,这些纳米材料通常用于其介电特性以增强设备应用的性能。尽管已经报道了有关纳米材料表面修饰的几次评论,但目前缺乏与聚合物介质有关的纳米材料表面功能化的综述。本综述总结了重要的金属氧化物介电纳米材料的表面修饰的最新发展,包括二氧化硅(SIO 2),二氧化钛(TIO 2),钛盐(Batio 3)(Batio 3)(Batio 3)和氧化铝(Al 2 O 3)(Al 2 O 3),例如化学药品,例如silanes,silanes,silanes,silanic,phosphonic,phosphonic,phosphonic and phosphicam and phosphicam and phosphonic and phosphonic and phosphicam and phosphonic and phosphonic and phosphonic。我们报告了纳米材料的化学修饰对纳米复合材料的介电性能(介电常数,分解强度和能量密度)的影响。除了使新手和专家在聚合物介电纳米复合材料的领域加快速度外,此综述还将作为选择适当化学剂的智力资源,用于将纳米材料功能化,以在特定聚合物矩阵中使用,从而潜在地调整了纳米复合材料的精细性能。
摘要。从电缆绝缘到先进电子设备,介电材料在众多应用中都备受关注。设备小型化的新趋势使得对能够精确生产纳米级介电薄膜的需求不断增加。此外,通常还需要特殊的机械性能,例如在柔性有机电子领域。聚合物是此目的的首选材料。然而,通过湿化学方法生产具有低缺陷密度且不含残留溶剂等的精确纳米级薄膜极其困难。引发化学气相沉积 (iCVD) 是一种无溶剂聚合物薄膜沉积工艺,可用于生产具有纳米级控制的高质量介电薄膜,从而避免了这些问题。这项工作通过一些新的 iCVD 应用示例展示了 iCVD 工艺在电气应用领域的多功能性。例如,通过在柱状氧化锌 (ZnO:Fe) 气体传感结构上添加疏水性有机硅氧烷薄膜,乙醇到氢气的选择性发生了变化,并且在高湿度水平下的性能也得到了改善。因此,改进后的传感器可用于潮湿环境,尤其是用于呼吸测试,这可以通过尖端的非侵入性方法诊断某些疾病。
摘要:表面钝化是一种广泛使用的技术,可减少半导体表面的复合损失。钝化层性能主要可以通过两个参数来表征:固定电荷密度(𝑄ox)和界面陷阱密度(𝐷it),它们可以从电容-电压测量(CV)中提取。在本文中,使用模拟钝化参数开发了高频电容-电压(HF-CV)曲线的模拟,以检查测量结果的可靠性。𝐷it 由两组不同的函数建模:首先,代表不同悬空键类型的高斯函数之和和应变键的指数尾部。其次,采用了由指数尾部和常数值函数之和表示的更简单的 U 形模型。使用基于晶体硅上的二氧化硅(SiO 2 /c-Si)的参考样品的实验测量来验证这些模拟。此外,还提出了一种使用简单 U 形 𝐷 it 模型拟合 HF-CV 曲线的方法。通过比较近似值和实验提取的 𝐷 it 的平均值,发现相对误差小于 0.4%。近似 𝐷 it 的常数函数表示在复合效率最高的中隙能量附近实验提取的 𝐷 it 的平均值。