摘要 沿海食草鱼类以大型藻类为食,这些藻类随后被其消化道中的微生物降解。然而,关于进行这种降解的微生物群的基因组信息很少。本研究通过计算机模拟研究碳水化合物活性酶和硫酸酯酶序列,探索了 Kyphosus 胃肠道微生物共生体协同降解和发酵红、绿和棕色大型藻类中的多糖的潜力。从先前描述的 Kyphosus 肠道宏基因组和新测序的生物反应器富集物中回收宏基因组组装基因组 (MAG) 揭示了 Kyphosus 肠道中主要微生物类群之间的酶活性差异。回收的 MAG 中用途最广泛的是来自拟杆菌门,其 MAG 中含有能够分解各种藻类多糖的酶集合。 Bacillota(Vallitalea 属)和 Verrucomi crobiota(Kiritimatiellales 目)基因组的独特酶和预测降解能力凸显了多个门的代谢贡献对拓宽多糖降解能力的重要性。很少有基因组含有单独完全降解任何复杂硫酸化藻类多糖所需的酶。来自不同分类群的 MAG 之间合适酶的分布,以及在候选酶中广泛检测到信号肽,与这些碳水化合物的协同细胞外降解相一致。这项研究利用基因组证据揭示了 Kyphosus 共生体在酶和菌株水平上尚未开发的多样性及其对大型藻类分解的贡献。生物反应器富集为降解和发酵过程提供了基因组基础,对于将从该系统获得的知识转化为水产养殖和生物能源领域至关重要。
海藻是一种丰富的生物活性化合物来源,它因其在过敏和炎症中的潜在治疗应用而引起了人们的关注。本综述研究了当前的科学文献,研究了海藻衍生的食物和饮食因素对过敏和炎症状况的影响。海藻中具有抗炎性,抗氧化剂和免疫调节特性的多糖,肽,多酚和脂肪酸。这些生物活性化合物具有调节免疫反应并减轻过敏反应的能力,使海藻成为开发功能性食品的有前途的候选者,靶向过敏和炎症的饮食干预措施。探索消耗海藻对过敏性疾病(例如过敏性鼻炎,哮喘和特应性皮炎)的影响的结果令人鼓舞。在海藻中发现的因素有可能减轻症状,减轻炎症和提高过敏患者的免疫功能。此外,还进行了对饮食的有效性进行的调查,以预防和管理慢性炎症状况(如炎症性肠病和类风湿关节炎)。正在揭示海藻衍生化合物的治疗作用的基础机制,揭示了它们调节免疫细胞活性,调节细胞因子产生,抑制炎症介质并促进肠道微生物群平衡的能力。了解这些分子机制对于靶向干预措施和鉴定负责观察到的治疗作用的特定生物活性化合物至关重要。海藻衍生的食物和饮食因素具有明显的希望,因为自然干预了过敏和炎症状况的预防和管理。但是,需要进一步的研究来建立基于海藻的干预措施的最佳剂量,配方和长期影响。此外,为了验证各种患者人群的疗效和安全性,临床试验是必要的。这篇评论强调了衍生出海藻的治疗潜力,并强调将海藻纳入饮食策略以对抗过敏和炎症的重要性。
3从海藻和豆类副产品中提取蛋白质5从微藻产出的可持续成分7解锁海藻的秘密,以增强水产养殖市场9将微藻转换为零净,自然食品 - 阳性食品 - 阳性食品成分11可提供氮气质量的良好数据,并添加了质量的肥料,现在贴有质量的有机肥料,现在是有机肥料,现在是有机化的,现在在富含油脂的藻类的帮助下,用废木酿造生物燃料的16个分子水平20的全球海洋碳循环20多产量的微藻生物填充物用于食物,饲料和香料23藻类喂养的细菌可以使可生物降解的酸奶酸奶25污水脱水的蓝色<
摘要:如今,电介质元面是一个有前途的平台,在许多不同的研究领域,例如传感,激光,全光调制和非线性光学器件。在所有不同类型的薄结构中,不对称的几何形状最近引起了人们的兴趣越来越高。尤其是,跨膜中的非线性光 - 物质相互作用构成了实现对光的微型控制的有效方法。在这里,我们通过第二次谐波生成在介电上表面上展示了非线性不对称产生。通过反转泵的照明方向,非线性发射功率由多个数量级调节。此外,我们演示了正确设计的元表面如何在逆转照明方向时在第二个谐波上产生两个完全不同的图像。我们的结果可能会为实现紧凑型纳米光量设备的重要机会铺平道路,以通过密集整合众多非线性谐振器来对应用进行成像。
Time-resolved oxidative signal convergence across the algae–embryophyte divide 1 2 Tim P. Rieseberg 1, * ,# ,Armin Dadras 1, * , Tatyana Darienko 1 , Sina Post 2 , Cornelia Herrfurth 2,3 , 3 Janine M. R. Fürst-Jansen 1 , Nils Hohnhorst 1 , Romy Petroll 4 , Stefan A. Rensing 5,Thomas 4Pröschold1,6,Sophie de Vries 1,Iker Irisarri 1,7,8,Ivo Feussner 2,3,9,Jan de Vries 1,2,7,10#5 6 1 - Goettingen University of Applipip bioinformatics of Appliped Bioinformatics,Goldschmidtstr。1,37077 7德国Goettingen 8 2 - Goettingen大学,阿尔布雷希特·哈勒植物科学研究所,植物生物化学系,Justus-von-liebig-weg,37077 9 9 Goettingen 9 Goettingen,德国,10 3 - Goettingen,Goettingen for Metherborience and forebornial Inuccomerient ot for Metheriment goet grobbbboiment(Gobb)脂科学,Justus-von-liebig Weg 11,37077德国Goettingen,12 4 - 藻类发展与进化系,Max Planck生物学研究所Tübingen,德国Tübingen,德国,德国,13 5--弗里布尔格大学生物信号研究中心(Bioss),弗里布尔格,弗里布尔氏菌,弗里布尔氏弗里布尔,5-3--奥地利Mondsee 15 7 - GOLDSCHMIDTSTR的校园研究所数据科学(CIDAS)。 33土地上的压力在动力学方面是独特的,需要在光和温度上进行迅速而急剧的变化。 虽然我们34知道土地植物与他们最接近的链球菌藻类亲戚共享35个基因组成的主要组成部分,以进行动态压力反应,但他们的一致作用却几乎没有理解。 这些激酶轮毂已经有41种自来已经综合了多种环境投入。1,37077 7德国Goettingen 8 2 - Goettingen大学,阿尔布雷希特·哈勒植物科学研究所,植物生物化学系,Justus-von-liebig-weg,37077 9 9 Goettingen 9 Goettingen,德国,10 3 - Goettingen,Goettingen for Metherborience and forebornial Inuccomerient ot for Metheriment goet grobbbboiment(Gobb)脂科学,Justus-von-liebig Weg 11,37077德国Goettingen,12 4 - 藻类发展与进化系,Max Planck生物学研究所Tübingen,德国Tübingen,德国,德国,13 5--弗里布尔格大学生物信号研究中心(Bioss),弗里布尔格,弗里布尔氏菌,弗里布尔氏弗里布尔,5-3--奥地利Mondsee 15 7 - GOLDSCHMIDTSTR的校园研究所数据科学(CIDAS)。33土地上的压力在动力学方面是独特的,需要在光和温度上进行迅速而急剧的变化。虽然我们34知道土地植物与他们最接近的链球菌藻类亲戚共享35个基因组成的主要组成部分,以进行动态压力反应,但他们的一致作用却几乎没有理解。这些激酶轮毂已经有41种自来已经综合了多种环境投入。1,37077德国Goettingen 16 8 - 莱布尼兹生物多样性研究中心,莱布尼兹生物多样性变化分析研究所(LIB),汉堡17号博物馆,汉堡,马丁 - 莱瑟 - 莱瑟 - 王子帕特尔茨,20146年汉堡,摩尔群岛,Gogoettingen,Gogoetting, (GZMB),Justus- Von-Liebig植物生物化学系19 WEG 11,37077 Goettingen,德国20 10 10 - Goettingen大学,Goettingen分子生物科学中心(GZMB),应用生物信息学系,21 Goldschmidtstr。1,37077德国Goettingen 22 *同等贡献23 #authors for Noteence:timphilipp.rieseberg@uni-goettingen.de&devries&devries&devries.jan@uni-goettingen.de 24 25 orcid:tim prieseberg:tim prieseberg 000000-0003-35548-848-848-848-848-8475,ARMIN DADRRAS 0000-0001-7649-2388,JanineMr.Fürst-Jansen 0000-0002-5269-8725,26 Tatyana darienko 0000-0002-1957-0076,Cornelia herrfurth:0000-0001-0001-8255-3255,IVOUSS:0000-0001-825-3255,IVOUSSNE: IKER IRISARRI 0000-27 0002-3628-1137,StefanA。 29 30 31摘要32最早的土地植物在适应环境压力方面面临着重大挑战。在这里,我们36种使用光生理学,2.7 TBP的转录组学以及对270多个不同样本的37个代谢物分析分析的时间疗法应力分析,以研究三种38 38 6亿年6亿年的链球菌的应力动力学。42 43引言44地球表面带有光合作用的生命。生物多样性的蓝细菌和藻类在岩石和树皮上形成绿色的45个生物膜,而地衣在最黯淡的山顶上壮成长。通过共表达分析和Granger Causal 39推断,我们预测了一个基因调节网络,该网络在40个乙烯信号成分,Osmosensor和主要激酶的链条上检索古代信号收敛的网络。所有这些都被全球征服土地的血统所吸引了46:土地植物(胚胎)1。与47种链植物藻类一起,土地植物属于链球菌2。系统基因组学分析表明,48个Zygnematophyceae是土地植物2-4的最接近的链球菌藻类亲戚,比较49基因组学已经取得了重大进展,在建立50种链球菌藻类和陆地植物之间的共享性状目录和陆地植物之间的共享目录中取得了重大进展。然而,我们才开始理解在征服土地11时如何使用这些基因51的功能优势。几种协同的52个特性已塑造了征服土地的植物12,包括多细胞发育13,14、53传播15,共生16,17和压力反应18。在后者的情况下,最早的土地植物必须克服多种压力源,现代地块植物通过调整55的生长和生理学19。与水相反,土地上非生物压力的标志之一是其56个动态性质:土地上的生命涉及温度,光或水的快速和急剧变化57可用性18。我们专注于两个陆地压力源 - 强烈波动的温度(冷和热量58应力)和光条件(高光应力和恢复)。类胡萝卜素在叶绿体的氧化应激缓解网络中是不可或缺的6259陆地应激源影响植物和藻类生理学,尤其是通过质体中的60种活性氧(ROS)产生的。质体是环境61挑战20-22的信号中心。
Daniela Maizel 1,Addison Testoff 2,Erik Swanson 3,Courtney Broedlow 3,Natasha Schaefer Solle 2,Nichole Klatt 3,Larry Brand 1,Helena Solo-Gabriele 2,Helena Solo-Gabriele 2,Cassandra Gaston 1,Alberto Caban-Martinez 2,Kimberto Caban-Martinez 2,Kimberly J.Popendorf 1Daniela Maizel 1,Addison Testoff 2,Erik Swanson 3,Courtney Broedlow 3,Natasha Schaefer Solle 2,Nichole Klatt 3,Larry Brand 1,Helena Solo-Gabriele 2,Helena Solo-Gabriele 2,Cassandra Gaston 1,Alberto Caban-Martinez 2,Kimberto Caban-Martinez 2,Kimberly J.Popendorf 1
这篇小型评论探讨了大型藻类基因组编辑的现状和挑战。尽管这类生物具有生态和经济意义,但基因组编辑的应用有限。虽然 CRISPR 功能已在两种褐藻(Ectocarpus species 7 和 Saccharina japonica)和一种绿藻(Ulva prolifera)中得到证实,但这些研究仅限于概念验证演示。由于编辑效率相对较低,所有研究还(共同)以腺嘌呤磷酸核糖基转移酶为目标来富集突变体。为了推动该领域的发展,应该注重推进辅助技术,特别是稳定转化,以便可以筛选出具有效率的新型编辑试剂。还需要开展更多工作来了解这些生物中的 DNA 修复,因为这与编辑结果紧密相关。为大型藻类开发高效的基因组编辑工具将解锁表征其基因的能力,这在很大程度上是未知领域。此外,鉴于其经济重要性,基因组编辑还将影响育种活动,以开发产量更高、生产更多商业价值化合物并表现出更强的抵御全球变化影响能力的菌株。
这些藻类菌群因季节而异,不同地点在不同的地点存在,它们的可用性与在该地方的有利状况一致。这些藻类在水生生态系统中起着至关重要的作用,可吸收营养,有毒物质,重金属并将其转化为最简单的形式。它们出现在藤本植物(驻水)和水水(自来水)中。某些藻类具有经济意义,因为它们是胡萝卜素,甘油和藻酸盐的来源,并且可以转化为水产养殖的食物来源。本研究是探索阿查尔浦尔地区萨潘河的藻类生物多样性的初步尝试。Achalpur和Paratwada被称为双城。这个双胞胎城市被一条名为“ Sapan”的河所环绕,有一个丘陵地区,就像对这座城市的篱笆一样。这座城市位于马哈拉施特拉邦和中央邦的边界。萨潘河从阿查尔浦城市中心流动。
picochlorum,是微藻生物学的新兴模型。是绿藻进化枝(Trebouxiophyceae)的成员,并于2004年发现,P。senew3的基因组于2014年首次出版,发现是在真核生物中最小的(13MB)和最小的基因密集(7k基因)之一,在真核生物中(Henley等人)(Henley等人(Henley等)(Henley等人)(Henley等人,2004年; 2004年; fofllonke an an an al an an al an al an an an an an al al an an an an an al al an an an al an an an an an an an an an an。picochlorum非常耐受性,并且具有快速的增长率,使其成为了解气候变化和病毒感染的良好候选者。尽管具有工业潜力,但其光合作用反应和新陈代谢仍未清楚。此外,地中海沿海泻湖中越来越多的皮克洛鲁姆盛开量是牡蛎养殖(THAU)的环境问题,从而损害了牡蛎的生长,无法消耗小藻类。因此,了解picochlorum种群在本质上,尤其是病毒的调节是一般的重要性。在Biam和Mio Labs之间的新兴合作中,该项目的假设(已经由AMU Transivir 2022-2025项目资助),我们已经与Berre Lagoon隔离并测序了一个Picochlorum,并将其测序为“ Pico A”。我们还隔离了在PICO A中复制的各种巨型病毒,这些病毒的一部分具有基因组,其中包含两个非常古老的辅助代谢基因(AMG)。巨型病毒在这些酶中可以使用什么使用?它们是否在感染过程中调节宿主细胞代谢以提高复制效率?使受感染的宿主在人群中更具竞争力?picochlorum sp。这些基因代码对于血红素氧化酶(HMOX)和植物苯胺蛋白:铁毒素氧化还原酶(PCYA)一种在藻类叶绿体中产生色素具有重要调节功能的途径:具有重要调节功能:叶绿素合成的叶绿素(Zhang et al。稳定光系统I(Wittkopp等,2017)。我们博士项目的主要目的是将分子生物学和遗传学方案调整为PICO A,目的是通过操纵HMOX和PCYA来了解巨型病毒 - 微藻相互作用。博士学位候选人还将尝试使用工程化的CRISPR/CAS9 PICO A作为底盘,以在感染期间设计我们的巨型病毒(Noel等,2021; Bisio等,2023)。由于其对温度和盐度的耐药性高以及前所未有的2小时双倍时间,作为可再生生物量的来源,人们获得了越来越多的兴趣。但是,它的光合作用和异养代谢几乎完全没有表征,并将提供理解其适应性的关键之一。因此,我们在该项目中的支持目的是对电子流,光保护途径和二氧化碳摄取机制进行完整的光合特征,并评估其在还原碳源上生长的能力。共同服务员
摘要:基于藻类的生物聚合物可用于各种能源相关的应用,例如电池和燃料电池中的分离器和聚合物电解质,也可以用作微藻生物燃料,这被视为高度可再生能源。为了这些目的,必须在本综述中讨论不同的物理,热化学和生化特性,例如孔隙率,高温耐药性或良好的电池机械性能,以及在生物燃料的情况下,基础材料的高能量密度和高能量以及在这些应用中使用Algae Biopolymers的环境方面的基础材料。另一方面,除了潜在用作聚合物电解质外,细菌生物聚合物还经常用于细菌纤维素分离剂或生物聚合物网络粘合剂中。此外,它们还被视为潜在的可持续生物燃料生产商和转换器。本综述旨在比较上述能量转换和存储的生物聚合物。关于藻类生物聚合物生产的挑战包括较低的可伸缩性和低成本效益,以及细菌聚合物,生长缓慢和非最佳发酵过程通常会引起挑战。另一方面,与常规聚合物相比,环境益处和更好的生物降解性是这些生物聚合物的很大优势,这些优势提出了进一步的研究,以使其生产更加经济。