固定螺距螺旋桨 ..................................................7-5 可调螺距螺旋桨 ..................................................7-6 活塞发动机飞机的螺旋桨超速 ........................................7-7 感应系统 ..................................................................7-7 化油器系统 ..................................................................7-8 混合控制 ..................................................................7-9 化油器结冰 ..................................................................7-9 化油器加热 ..................................................................7-10 化油器空气温度计 ..................................................7-11 外部空气温度计 ..................................................7-11 燃油喷射系统 ..................................................................7-11 增压器和涡轮增压器 ..................................................7-12 增压器 ..................................................................7-12 涡轮增压器 ..................................................................7-13 系统操作 ..................................................................7-14 高空性能 ..................................................................7-14 点火系统 ..................................................................7-15 油系统 ..................................................................7-16 发动机冷却系统.................................................7-17 排气系统...............................................................7-18 启动系统...............................................................
螺旋对象通常在电子或机械微系统中实现,需要精确理解其机械性能。虽然已经深入研究了由圆柱形纤维形成的螺旋,但对螺旋形状的纤维膜的横截面的作用知之甚少。我们通过实验研究了由超薄PMMA丝带制造的微螺旋的力伸展响应。利用新实现的控制螺旋几何形状,量化螺旋螺距的影响,并突出显示了螺旋丝的显着性刺激。两种现象是确定的:从小螺距上的色带扭曲到高螺距上弯曲主导的状态的机械跃迁,以及纯粹的几何影响,特定于螺旋丝带。与先前建立的不可扩展性弹性条的分析模型发现了良好的一致性。
评估螺旋元件疲劳损伤的基础是几个热点的长期循环分布,即螺旋横截面上的关键位置,代表一定数量的螺旋位置,即一个螺距内螺旋线上的位置,如图 2-2 所示。
摘要:本文介绍了一种验证适用于 2 类无人机的风洞螺旋桨测力计的方法。这种测力计的预期用途是表征相关尺寸和操作条件下的螺旋桨,在这些条件下,此类螺旋桨易受低雷诺数效应的影响,而这种效应在风洞中很难通过实验检测出来。尽管不确定性分析可能会增强人们对测力计数据的信心,但测力计的设计或实验安排(例如配置和仪器)可能无法检测到重要的螺旋桨特性,甚至可能在结果中产生伪影。本文提出的验证方法将叶片元素动量理论 (BEMT) 的分析结果与实验数据进行比较,以验证测力计是否捕捉到了基本的螺旋桨物理特性,以及自相似实验结果,以验证测力计是否能够解决螺旋桨直径和螺距的差异。进行了两项研究,以验证测力计实验数据是否与 BEMT 预测的性能相匹配。第一项研究考虑了三个螺旋桨,它们具有相同的 18 英寸(0.457 米)直径,螺距从 10 到 14 英寸(0.254 到 0.356 米)不等。第二项研究保持螺距不变,直径从 14 到 18 英寸(0.356 到 0.457 米)不等。在测试期间,风洞速度范围为 25 英尺/秒至 50 英尺/秒(7.62 到 15.24 米/秒),螺旋桨转速各不相同
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
螺旋桨驱动,倒车不应导致推进机械过载。(3) 当蒸汽涡轮机用作主推进装置时,它们应能够在倒车自由航线中保持至少 70 % 的前进转速,相当于最大连续前进功率,持续至少 15 分钟。倒车试验应限制在 30 分钟以内或按照制造商的建议进行,以避免涡轮机因“风阻”和摩擦的影响而过热。(4) 主推进系统应进行测试,以证明倒车响应特性。测试应至少在推进系统的操纵范围内并从所有控制位置进行。测试计划应由船厂提供并经验船师接受。如果制造商已定义具体操作特性,则应将其纳入测试计划。(2018) (5) 推进装置的反向特性,包括可调螺距螺旋桨的叶片螺距控制系统,应在试验期间进行演示和记录。(2018)