摘要:合成生物学集中于生物部位的设计和模块化组装,以构建人工生物系统。在过去的十年中,合成生物学已经成长为高产的领域,在神经科学,基于细胞的疗法和化学制造等不同地区取得了进步。同样,基因治疗领域在概念验证研究和临床环境中都取得了巨大的进步。基因治疗兴趣增加的一个病毒载体是腺病毒(AD)。广告势头增加的主要部分来自合成生物学对广告工程的发展。基因疗法和合成生物学的收敛性通过降低体内的AD毒性,提供精确的AD型向性欲,并纳入遗传回路以制造适应环境刺激的智能疗法,从而增强了AD媒介。AD载体的合成生物学工程可能会导致卓越的基因输送和编辑平台,从而可以在广泛的治疗环境中找到应用。关键字:腺病毒,CRISPR,基因治疗,遗传回路,蛋白质工程,合成生物学,病毒式衣壳,病毒toral疗法T
摘要:从历史上看,腺相关病毒(AAV) - 缺陷干扰颗粒(DI)被称为异常病毒,由自然复制和封装误差引起。通过单个病毒粒子基因组分析,我们揭示了主要类别的DI颗粒在“快回背”配置中包含双链DNA基因组。5' - 反向基因组(SBG)包括P5启动子和部分REP基因序列。3'-sbgs包含衣壳区域。从理论上讲,5'-SBG的分子构构可能允许在其二聚体配置中双链RNA转录。我们的研究表明,5-SBG调节AAV REP表达并改善了AAV包装。相比之下,其二聚体配置处的3'-sbgs增加了帽蛋白的水平。5'-SBG和3'-SBG的产生和积累似乎是协调的,以平衡病毒基因表达水平。因此,5'-SBG和3'-SBG的功能可能有助于最大程度地提高AAV后代的产量。我们假设AAV病毒群体表现为菌落,并利用其亚基因组颗粒来克服病毒基因组的大小极限并编码其他基本功能。
• Valentina Buffa - 逐步开发基于细胞的基因治疗产品 G3MDYF/GNT0004(rAAV8 人类微肌营养不良蛋白)效力测定 - P0007 • Ricardo Rojas Gonzalez- 使用 CIMmultus® PrimaT® 整体柱开发 AAV8 纯化过程中的完整衣壳富集精制步骤 - P0012 • Christian Leborgne - 评估 IdeS 效率以降低高滴度 NAb 并允许新西兰白兔重新给药 - P0013 • Emmanuel Thevenot - 开发定量 alpha-dystroglycan 糖基化测试,用于 ATA-001-FKRP 开放标签多中心 AAV 试验中治疗的肢带型肌营养不良症 R9 患者 - P0088 • Ai Vu Hong - 通过组合多 VR 库和深度学习模型 - P0115 • Louise Mangin - 工程化的 AAVpo1.A1 载体在 X 连锁肌管性肌病模型中通过肝脏去靶向有效转导小鼠和人类骨骼肌纤维 - P0118 • Sonia Albini - 通过分裂内含肽双 AAV 方法对 MIDI 肌营养不良蛋白变体进行治疗效果 - P0124
摘要:CRISPR/Cas 系统的发现及其发展成为强大的基因组工程工具,彻底改变了分子生物学领域,并激发了人们对其治疗多种人类疾病的潜力的兴奋。作为基因治疗靶点,视网膜由于其手术可及性和由于其血视网膜屏障而具有的相对免疫优势,比其他组织具有许多优势。这些特点解释了过去十年眼部基因治疗取得的巨大进展,包括首次使用 CRISPR 基因编辑试剂的体内临床试验。尽管病毒载体介导的治疗方法取得了成功,但它们有几个缺点,包括包装限制、预先存在的抗衣壳免疫和载体诱导的免疫原性、治疗效力和持久性以及潜在的遗传毒性。纳米材料在治疗剂输送中的应用彻底改变了遗传物质输送到细胞、组织和器官的方式,并提供了一种有吸引力的替代方案来绕过病毒输送系统的局限性。在这篇综述中,我们探讨了非病毒载体作为基因治疗工具的潜在用途,探索了纳米技术在医学领域的最新进展,并重点研究了纳米粒子介导的 CRIPSR 基因货物向视网膜的递送。
标准化腺相关病毒(AAV)用于生物治疗应用的vent vecter venters venterage对确保基因疗法的安全性和效率至关重要。这包括分析产品的关键质量属性。,用于评估这些属性的许多当前分析技术都有局限性,包括低吞吐量,大型样本需求,了解得很差的测量可变性以及方法之间缺乏可比性。为了应对这些挑战,必须建立可用于可比性测量,当前测定的优化以及参考材料的开发的高阶参考方法。高度精确的方法对于测量空/部分/全帽比和AAV矢量的滴度是必需的。此外,重要的是要开发方法来测量较不建立的临界质量属性,包括翻译后修饰,衣壳固定测定法和甲基化方案。这样做,我们可以更好地了解这些属性对产品质量的影响。此外,诸如宿主细胞蛋白和DNA污染物之类的含量的定量对于获得调节性批准至关重要。通过告知过程开发并促进参考材料的生成以进行测定验证和校准,对彻底表征AAV向量的开发和应用对于彻底表征AAV向量至关重要。
重组腺相关病毒(RAAV)载体目前是通过基因疗法治疗眼科疾病的唯一经过验证的车辆。目前正在采用针对眼部疾病的广泛基因治疗计划。将近20年的研究已经增强了靶向视网膜组织并改善转基因对特定细胞类型的效率。工程化的AAV CAPSID,AAV2.7M8目前是玻璃体内(IVT)注射后转导视网膜的最佳衣壳之一。然而,在视网膜在临床试验中施用AAV2.7M8载体后,已经报道了包括眼内炎症在内的不良反应。此外,我们一直观察到AAV2.7M8表现出低包装滴度,而与矢量构造设计无关。在本报告中,我们发现AAV2.7M8包装矢量基因组具有比AAV2更高的程度。我们还发现,基因组加载的AAV2.7M8刺激了IVT给药后小鼠视网膜中小胶质细胞的纤维化,而对基因组负载的AAV2和空的AAV2.7M8 capsids的反应产生了很多较轻的响应。这个发现表明,IVT施用AAV2.7M8载体可能会刺激视网膜免疫反应,部分原因是它偏爱包装和提供非单位长度基因组。
抽象的Mitoviruses(Mitoviridae家族)是在真菌和植物的线粒体中代表的小无衣壳RNA病毒。迄今为止,唯一的真实的动物米托病毒被鉴定为Lutzomyia longipalpis mitovirus 1(Lulmv1)。来自几种动物的转录组研究的公共数据库可能是识别经常错过的Mitovires的好来源。因此,在NCBI转录组shot弹枪组装(TSA)库中搜索类似于Mitovirus的转录本,以及对先前在NCBI非冗余(NR)蛋白质序列库中记录的Mito-病毒的搜索,以识别与动物相关的类似Mitovirus序列。在TSA数据库中总共确定了10个新的推定中病毒,在NR Pro-te-te-te-Te-Te-Teperin数据库中总共确定了5个推定的Mitovires。据我们所知,这些结果代表了与Poriferan,Cnidarians,echinoderms,Crustaceans,Myriapods和Arachnids相关的推定线病毒的第一个证据。根据使用最大似然法的不同系统发育推论,这18种推定的线索病毒与LULMV1(唯一已知的动物感染线虫病毒)形成了强大的单系谱系。基于计算机程序中的这些发现,证明了与动物相关的一系列推定的mitovirus的有力证据,这些枝条被临时命名为“ kvinmitovirus”。
简介 自体造血干细胞 (HSC) 基因疗法治疗血红蛋白病已显示出良好的临床疗效 (1–4)。然而,目前的方案包括分离患者 HSC、使用整合载体进行体外基因改造以及在骨髓毒性 BM 调理后重新输注改造后的 HSC,这些方案在技术上很复杂且成本高昂。我们正试图开发一种体内 HSC 基因治疗方法,这种方法不需要骨髓消融和整合载体,而且在技术上更容易。在这种方法中,我们使用衣壳修饰的辅助依赖性 HDAd5/35++ 载体 (1, 2)。这些载体靶向 CD46,这是一种在原始 HSC 上表达的受体 (2, 3)。在通过常规用于 HSC 动员/收获的药剂将 HSC 从 BM 动员后,将 HDAd5/35++ 载体静脉注射。动员的 HSC 在周围时被转导。大部分 HSC 返回 BM。动员造血干细胞对于体内转导至关重要,因为在骨髓中,造血干细胞被细胞外基质蛋白包围(4),基因转移载体无法接触(2)。为了扩增体内转导的造血干细胞,我们目前使用一种基于突变 O 6 -甲基鸟嘌呤-DNA 甲基转移酶(mgmt P140K)基因的体内选择机制,该基因可产生对 O 6 -BG/BCNU 的抗性
摘要:BK 多瘤病毒 (BKPyV) 衣壳突变在肾移植 (KTx) 接受者体内积累,病毒持续复制。这些突变与中和逃逸有关,似乎是由于宿主细胞 APOBEC3A/B 酶使胞嘧啶脱氨而产生的。为了研究患者体内发生的致突变过程,我们扩增了 VP1 基因的分型区,对扩增子进行了 5000-10,000 × 深度测序,并确定了罕见突变,这些突变与 COSMIC 突变特征相吻合。在携带 BKPyV 基因组的质粒的扩增子中确定了背景突变,并与来自法国和越南的 23 名 KTx 接受者的 148 个样本中观察到的突变进行了比较。在尿液、血清和肾脏活检样本中持续观察到三种突变特征,其中两种,SBS2 和 SBS13,与 APOBEC3A/B 活性相对应。此外,在患者样本和体外感染 BKPyV 的细胞中均检测到了第三个病因不明的特征 SBS89。定量上,尿液样本中的 APOBEC3A/B 突变率与尿液病毒载量密切相关,并且似乎因人而异。这些结果证实,APOBEC3A/B 是患者 BKPyV 基因组突变的主要来源,但并非唯一来源。
全球冠状病毒病 (COVID-19) 大流行是由严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 引起的。冠状病毒因其病毒衣壳在显微镜下与日冕相似而得名(作者匿名,1968 年),它广泛传播,可引起类似于普通感冒的轻微感染。事实上,所有四种人类冠状病毒:HCoV-OC43、HCoV-HKU-1、HCoV-299E 和 HCoV-NL63,都是地方性的,并在人类中持续传播(Corman 等人,2018 年)。此前已报告过三次冠状病毒疫情,尽管规模远低于 COVID-19 疫情:SARS-CoV-1、MERS-CoV 和冠状病毒 HuPn-2018。与 COVID-19 类似,所有这些都是人畜共患疾病,最初通过动物宿主传播给人类(Ye 等人,2020 年)。与以往的疫情不同,自 2019 年底出现以来,COVID-19 几乎对每个人的生活都造成了巨大的破坏。截至 2022 年 11 月 4 日,COVID-19 已在全球造成 660 万人死亡(Ritchie 等人,2020 年)。巨大的死亡人数和对社会的影响促使人们大规模开展疫苗和抗病毒药物的开发,以预防和对抗 COVID-19。这项研究工作的积极成果毋庸置疑;多种疫苗,例如阿斯利康、Moderna、辉瑞/BioNTech,已经开发出来并投入使用。