尽管[插入强迫]对[插入偏置过程]的影响的扩增将发生在数十年的时间尺度上,但与[插入有偏见的过程]本身相关的固有时间尺度通常是在小时的顺序上。因此,原则上应该可以通过在短期天气预测模式下研究此类模型的性能来评估[插入过程]的异常值是否现实。
在向共同居住的受众传达演示文稿时,我们通常会使用带有文本和2D图形的幻灯片来补充口语叙事。尽管在2D媒体上探索了演示文稿,但增强现实(AR)允许演示设计师在dis-plot的现有物理基础架构中添加数据和增强。这种耦合可以为观众提供更具吸引力的体验并支持理解。使用氢气,我们提出了一种新颖的应用,该应用利用了数据驱动的讲故事的好处,以解释Hy-Drogen分配器可靠性的独特挑战。利用物理道具,位置数据以及虚拟增强和动画,氢气是一种独特的演示工具,尤其对利益相关者,旅游组和VIP至关重要。氢气是与当地氢燃料研究团队进行多种合作设计迭代的产物,并通过对团队成员的访谈以及与最终用户的用户研究进行评估,以评估交互式AR体验的可用性和质量。通过这项工作,我们为AR数据驱动的演示文稿提供了设计注意事项,并讨论了如何将AR用于除传统基于幻灯片的演示外的创新内容。
非局部博弈在量子信息论中得到了广泛的研究。我们在这一类中考虑了非局部博弈的众多应用。例如,CHSH 博弈已被用来证明物理学中经典力学和量子力学之间确实存在差异 [CHSH69]。在计算机科学中,量子非局部博弈可用作协议的一部分,该协议使经典多项式时间机器能够验证量子计算的结果,假设我们有两个(可能不受信任的)量子设备,它们可能彼此共享纠缠 [Gri17]。在今年早些时候证明的突破性成果中,表明假设玩家使用量子策略,没有算法可以近似非局部博弈的最大获胜概率。这可以证明 MIP* = RE [JNV + 20],即可由多证明者量子交互式证明验证的问题可以用递归可枚举问题类来精确表征。换句话说,假设与两个纠缠的量子证明器交互,经典的多项式时间验证器可以验证图灵机是否停止,这是一个无法判定的问题!更引人注目的是,复杂性理论结果 MIP* = RE 解决了数学中两个长期存在的未解问题。具体来说,它意味着数学物理中比较两种量子力学模型的 Tsirelson 问题的否定结果,这也给出了冯诺依曼代数理论中 Connes 嵌入猜想的否定结果。在本文中,我们的重点是研究群论和表示论中的工具,这些工具可应用于非局部博弈论和 Connes 嵌入猜想的研究。本文的组织结构如下:我们在第 2 部分介绍基础知识,通过定义一类简单的非局部博弈(称为线性系统博弈)、此类博弈的量子策略的含义以及它们的解组。第 3 节构成了本文的技术核心,其中我们研究了解群的近似表示理论与完美量子策略之间的关系。最后在第 4 节中,我们讨论了其他概念,例如可服从群、社会群和超线性群,以及它们与非局部博弈的刚性之间的联系,最后提出了一些有趣的未解决的问题。
单词含义不仅仅是字典中的条目。它涉及大量的知识,这些知识将人们遇到的场景和经历(即,丰富的百科全书知识)(即适当地适用这个词(即男孩很生气),其他单词的组合以及词出现的语法结构。单词的含义因情况而异以及使用上下文各不相同。例如,用来描述蚊子,鲸鱼或行星时,“小”一词意味着不同的东西。与小小相关的属性在上下文依赖性方面有所不同:有必要知道单词的含义,但也必须知道所使用的上下文,以及如何结合单词以构建含义(Medin&Shoben,1988)。
背景:在运动成像(MI)脑电图(EEG)记录以及在脑计算机界面(BCI)应用的MI分类中,常见的空间模式(CSP)已被广泛用于特征外观。BCI通常需要相对较长的脑电图数据来可靠的分类培训。更具体地,在使用一般空间模式进行特征提取之前,使用两个不同类别的训练词典来构造复合词典矩阵,并且在滤波器带中的测试样品的表示形式估计为字典矩阵中列的线性组合。新方法:减轻频率带之间的稀疏小样本(SS)问题。我们为BCI系统中的运动图像提出了一种新型的稀疏组过滤库模型(SGFB)。结果:我们通过基于对非零相关系数的类别表示残差来执行任务。此外,我们还在三个不同的时间窗口中使用约束过滤器频段执行关节稀疏优化,以在多任务学习框架中提取强大的CSP功能。为了验证我们的模型的有效性,我们对BCI竞争的公共EEG数据集进行了实验,以将其与其他竞争方法进行比较。与现有方法的比较:差异
免责声明:本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
尽管通过视觉和语言预处理取得了令人印象深刻的进步,但尚不清楚这种联合学习范式是否可以帮助理解每种单独的方式。在这项工作中,我们通过探测广泛的任务,旨在以细微的方式评估学习代表的质量,对视觉和语言模型和视觉模型进行比较分析。有趣的是,我们的经验观察表明,视觉和语言模型在标签预测任务(例如对象和属性预测)方面更好,而仅视力模型在需要更局部化的密集预测任务下更强大。我们希望我们的研究能阐明语言在视觉学习中的作用,并作为各种训练有素的模型的经验指南。代码将在https://github.com/lizw14/visual_probing上发布。
摘要:扩散策略是有条件的扩散模型,这些模型学习以机器人和环境状态为条件的机器人动作分布。他们最近显示出胜过确定性和替代作用分布学习公式的表现。3D机器人策略使用3D场景特征表示形式使用感应深度从单个或多个相机视图汇总。他们已经显示出比在相机观点之间更好地概括其2D对应物。我们统一了这两条工作和现在的3D扩散器演员,这是一种具有新颖的3D DeNoising Transformer的神经政策,它融合了来自3D视觉场景的信息,语言指令和本体感受,以预测NOISISE 3D ROBOT姿势的噪声。3D扩散器Actor在RLBench上设置了新的最先进的,其绝对性能增益比当前的SOTA在多视图设置上占据了18.1%,并且在单视图设置上的绝对增益为13.1%。在加尔文基准测试上,它比当前的SOTA相对增加了9%。它还学会了通过少数示威来控制现实世界中的机器人操纵器。通过与当前的SOTA策略和模型的消融进行彻底比较,我们显示了3D扩散器演员的设计选择极大地超过了2D表示,回归和分类目标,绝对关注和整体非言语的非言语非言语的3D场景嵌入。
摘要:大脑是代表性器官的想法在19世纪起源于19世纪,当时神经病学家开始得出关于大脑所代表的临床和实验研究的结论。围绕大脑代表的最早争议之一是“肌肉与运动”辩论,它涉及运动皮层是否代表了运动的复杂运动还是运动的分数组成部分。杰出的思想家在双方都感到震惊:神经病学家约翰·休林斯·杰克逊(John Hughlings Jackson)和F.M.R.Walshe赞成复杂的运动,神经生理学家Charles Sherrington和Neurosurgeon Wilder Penfield赞成运动组件。本文研究了这些和其他大脑科学家在肌肉与运动辩论的前八十年中不断发展的代表概念(c。1873-1954)。尽管参与者同意代表的许多表面特征,但他们的推论揭示了关于其推论作用的深刻分歧。不同的认识论承诺引发了矛盾的概念,即表示归因于什么暗示和证据支持它们。