场景文本图像不仅包含样式信息(字体,背景),还包含内容信息(字符,纹理)。不同的场景文本任务需要不同的信息,但是以前的表示学习方法 - 在所有任务中使用紧密耦合的功能,从而导致次优性能。我们提出了一个旨在解开这两种功能的分解表示学习框架(亲爱的),以改善适应性,以更好地解决各种下游任务(选择您真正需要的内容)。具体来说,我们合成具有相同样式但内容不同的图像对数据集。基于数据集,我们通过监督设计将两种类型的功能分解。很明显,我们将视觉表示形式直接分为样式和内容功能,内容特征是通过文本识别损失来监督的,而对齐损失使图像对中的样式特征保持一致。然后,样式功能用于通过图像解码器重新构造对应图像的提示,以指示对应方的内容。这样的操作根据其独特属性有效地将功能分解。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。 我们的方法在场景文本识别,转换和编辑中实现了最新的性能。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。我们的方法在场景文本识别,转换和编辑中实现了最新的性能。
2025 年 1 月 5 日——安全措施得到加强。曼尼普尔邦的 Kangpokpi 区,SP ...陆军表示,“在执行任务时。班迪波拉区,一辆车...
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过填充动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描学习此表示形式,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
量子计算已成为一个新兴领域,可能彻底改变信息处理和计算能力的格局,尽管物理上构建量子硬件已被证明是困难的,而且当前嘈杂中型量子 (NISQ) 时代的量子计算机容易出错且其包含的量子比特数量有限。量子机器学习是量子算法研究中的一个子领域,它对 NISQ 时代具有潜力,近年来其活动日益增多,研究人员将传统机器学习的方法应用于量子计算算法,并探索两者之间的相互作用。这篇硕士论文研究了量子计算机的特征选择和自动编码算法。我们对现有技术的回顾使我们专注于解决三个子问题:A) 量子退火器上的嵌入式特征选择,B) 短深度量子自动编码器电路,以及 C) 量子分类器电路的嵌入式压缩特征表示。对于问题 A,我们通过将岭回归转换为量子退火器固有的二次无约束二元优化 (QUBO) 问题形式并在模拟后端对其进行求解来演示一个工作示例。对于问题 B,我们开发了一种新型量子卷积自动编码器架构,并成功运行模拟实验来研究其性能。对于问题 C,我们根据现有技术的理论考虑选择了一种分类器量子电路设计,并与相同分类任务的经典基准方法并行进行实验研究,然后展示一种将压缩特征表示嵌入到该量子电路中的方法。
Xu,J。(2025)。大脑网络通过图表学习。新加坡南南技术大学博士论文。https://hdl.handle.net/10356/182865
用法指南:请参阅https://eprints.bbk.ac.uk/policies.html的用法指南,或者请联系lib-eprints@bbbk.ac.uk。
医学概念的有效表示对于电子健康记录的次要分析至关重要。神经语言模型在自动从临床数据中得出医学概念表示方面已显示出希望。但是,尚未对不同语言模型的比较性能,用于创建这些经验表示形式及其编码医学语义的程度,尚未得到广泛的研究。本研究旨在通过评估三种流行语言模型的有效性 - word2vec,fastText和手套 - 在创建捕获其语义含义的医学概念嵌入中的有效性。通过使用大量的数字健康记录数据集,我们创建了患者轨迹,并用它们来训练语言模型。然后,我们通过与生物医学术语进行明确比较来评估学到的嵌入式编码语义的能力,并通过预测具有不同级别可用信息的患者结果和轨迹来隐含。我们的定性分析表明,FastText学到的嵌入的经验簇与从生物医学术语获得的理论聚类模式表现出最高的相似性,分别在0.88、0.80和0.92的经验簇和0.92之间的诊断,过程和医疗代码分别为0.88、0.80和0.92之间。相反,为了预测,Word2Vec和Glove倾向于优于快速文本,而前者的AUROC分别高达0.78、0.62和0.85,分别用于现场长度,再入院和死亡率预测。在预测患者轨迹中的医疗法规时,手套在诊断和药物代码(分别为0.45和0.81)的最高级别上达到了语义层次结构的最高性能(AUPRC分别为0.45和0.81),而FastText优于其他模型的过程代码(AUPRC为0.66)。我们的研究表明,子词信息对于学习医学概念表示至关重要,但是全球嵌入向量更适合于更高级别的下游任务,例如轨迹预测。因此,可以利用这些模型来学习传达临床意义的表示形式,而我们的见解突出了使用机器学习技术来编码医学数据的潜力。
摘要 - 隐式表示,例如神经辐射场(NERF),可以通过连续的神经功能在3D场景中绘制颜色,密度和语义。但是,这些模型通常需要手动和仔细的人类数据收集进行培训。本文解决了自主nerf构造的主动探索问题。我们研究代理如何学会有效地探索未知的3D环境,以便在自主性过程中收集的数据能够学习高质量的神经隐式图表示。在四个与机器人相关的下游任务上评估了所学代表的质量:经典的观点渲染,地图重建,计划和姿势改进。我们比较了不同的探索策略的影响,包括基于前沿的基于基础和学习的方法(端到端和模块化)以及针对此问题量身定制的不同奖励功能。经验结果表明,可以使用在看不见的环境中使用一集经验对积极收集的数据进行培训,并且Autonerf是一种经过加固学习训练的模块化勘探策略,使得获得了高质量的NERF,以获得高质量的NERF,以实现经过考虑的下游机器人任务。最后,我们证明,使用Autonerf可以将代理部署到以前未知的场景中,然后通过通过勘探,重建和策略填充的循环来适应场景来自动改善其导航性能。
