尽管真空电弧和梯度极限理论已用于线性对撞机和托卡马克等大型项目的设计和成本核算,但人们对其了解甚少。在真空电弧被隔离近 120 年后,电弧的确切机制及其产生的损害仍然存在争议。我们描述了真空电弧的简单通用模型,该模型可以包含所有活动机制,旨在解释所有相关数据。我们的四阶段模型基于在 805 MHz 下进行的实验,实验采用了各种腔体几何形状、磁场和实验技术,以及原子探针断层扫描和微电子故障分析的数据。该模型考虑了电弧的触发、等离子体形成、等离子体演化和表面损伤阶段。我们的数据清楚地显示了由差异冷却产生的表面损伤,这种损伤能够产生局部高场增强 β ∼ 200,并在后续脉冲中产生电弧。我们更新了模型并讨论了新特征,同时还指出了新数据在将模型扩展到更宽的频率范围方面会很有用的地方。
摘要 润滑剂不足会导致润滑状态从(弹性)流体动力学转向边界条件的风险。在这些条件下,有效的摩擦膜形成对于限制表面损伤至关重要,但缺乏用于太空级润滑剂的添加剂技术。这项工作评估了一种新型多功能离子液体润滑剂与多烷基环戊烷 (MAC) 一起使用的可行性。执行器齿轮箱在氮气氛围中的缺油条件下运行,以评估摩擦膜形成润滑剂(指定为 P-SiSO)的有效性。通过使用显微镜(光学、干涉、SEM)和 X 射线微断层扫描 (XMT),从宏观到微观尺度在表面和亚表面分析中评估了 P-SiSO 的有效性,并讨论了有效润滑的机制。
摘要 本文在航空合金孔加工的背景下对传统钻孔和螺旋铣削进行了比较研究,阐述了这两种不同的加工工艺对不同航空合金的微观结构和疲劳性能的影响。结果表明,与螺旋铣削工艺相比,两种合金在传统钻孔下都会经历更严重的表面/亚表面塑性变形。对于这两种合金,与传统钻孔相比,螺旋铣削可延长其试样疲劳寿命。在所有加工条件下,Al 2024-T3 的疲劳寿命明显长于 Ti-6Al-4V。使用冷却液通常可减少表面损伤,并可提高加工合金的疲劳性能。此外,还研究了加工表面粗糙度,以进一步阐述不同加工工艺的影响。
系/分部:细胞生物学 教员姓名:Deborah Andrew 研究课题:器官形成的发育遗传学;果蝇 系/分部:细胞生物学 教员姓名:Peter Devreotes 研究课题:趋化因子定向细胞迁移;信号转导 系/分部:细胞生物学 教员姓名:Peter Espenshade 研究课题:细胞胆固醇稳态调节和对缺氧的适应 系/分部:细胞生物学 教员姓名:Andrew Ewald 研究课题:发育和癌症中上皮形态发生的细胞机制和分子调控。 系/分部:细胞生物学 教员姓名:Luis Adres Garza 博士 研究课题:皮肤干细胞和前列腺素在再生和伤口愈合中的研究。 系/分部:细胞生物学 教员姓名:David Hackam 博士 研究课题:上皮表面损伤和修复的免疫调节
在当前的MSC论文中,使用具有Cl 2 /ar +过程的常规RIE和具有相同蚀刻化学的新开发的啤酒对Si(100)中的辐射损伤进行了比较研究。然后通过开尔文力探针显微镜(KFPM)测量接触电势差(CPD)分析的表面损伤。这些实验的结果表明,由于CPD的值和蚀刻表面的工作函数远低于ALE样品的值,因此RIE过程造成的损害很高。根据接近原始Si的CPD值,啤酒过程显示在蚀刻的Si样品上几乎最小损伤形成(100)。最后,该项目为与本研究所使用的不同条件下进一步研究啤酒损害打开了大门,因为它对纳米制作和半导体行业的重要性。
沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
下一代半导体设备需要超低介电常数(ULK)材料,例如线结构后端的多孔SICOH,以使较低的电阻和电容(RC)时间延迟,但是,这些ULK材料在蚀刻过程中容易受到损坏。在这项研究中,纳米级牙线掩盖多孔的sicoH的蚀刻特征,例如蚀刻速率,蚀刻效果,表面损伤等。和等离子体特性,已使用双电频电容性耦合等离子体系统(DF-CCP)进行了研究,并通过使用用于低k介电蚀刻的常规C 4 F 8基于CC 4 F-CCP的气体进行了比较。结果表明,对于多孔SICOH的相似蚀刻速率和蚀刻率,与C 3 H 2 F 6的蚀刻相比,观察到较低的侧壁损伤。The analysis showed that it was related to less UV (less than 400 nm) emission and less fluorine radicals in the plasma for C 3 H 2 F 6 compared to C 4 F 8 , which leads to less fluorine diffusion to the sidewall surface of the etched porous SiCOH by the fluorine scavenging by hydrogen in C 3 H 2 F 6 .
摘要:通过从宽频率范围内捕获光谱数据以及空间信息,高光谱成像 (HSI) 可以检测到温度、湿度和化学成分方面的细微差异。因此,HSI 已成功应用于各种应用,包括用于安全和防御的遥感、用于植被和农作物监测的精准农业、食品/饮料和药品质量控制。然而,对于碳纤维增强聚合物 (CFRP) 的状态监测和损伤检测,HSI 的使用是一个相对未触及的领域,因为现有的无损检测 (NDT) 技术主要侧重于提供有关结构物理完整性的信息,而不是材料成分。为此,HSI 可以提供一种独特的方法来应对这一挑战。本文以欧盟 H2020 FibreEUse 项目为背景,介绍了使用近红外 HSI 相机将 HSI 用于 CFRP 产品无损检测的应用。详细介绍了三个案例研究中的技术挑战和解决方案,包括粘合剂残留物检测、表面损伤检测和基于 Cobot 的自动化检测。实验结果充分证明了HSI及相关视觉技术在CFRP无损检测方面的巨大潜力,特别是满足工业制造环境的潜力。
用六甲硅烷基处理的细胞已显示出某些细胞表面损伤,而不管真菌培养中使用的金属如何。尽管这可能是由于干燥过程引起的,这也会导致微胶囊的丢失(图5A-D)。 在此干燥过程中,处理的细胞在其拓扑结构没有变化。 仅在下部电子检测器(LED)进行PB处理时,揭示了非典型的三维泄漏(图。 5b)。 随后,在用Pb处理后,Cu和Zn可以在细胞表面观察到一些絮状物(图 5b-d)。 否则,从图。 E-P图的 5,观察到酵母菌保持其微胶囊,样品通过临界点过程(CPD)干燥。 微胶囊的方面是包围整个单元的薄层。 此外,此层5A-D)。在此干燥过程中,处理的细胞在其拓扑结构没有变化。仅在下部电子检测器(LED)进行PB处理时,揭示了非典型的三维泄漏(图。5b)。随后,在用Pb处理后,Cu和Zn可以在细胞表面观察到一些絮状物(图5b-d)。否则,从图。5,观察到酵母菌保持其微胶囊,样品通过临界点过程(CPD)干燥。微胶囊的方面是包围整个单元的薄层。此外,此层
简介 螺旋锥齿轮是高精度、高成本的部件,用于几乎所有现代旋翼飞机的主要动力传动系统。这些齿轮的生产是一个复杂的过程,首先要用高质量的航空钢(如 AMS 6265)锻造形状。将形状粗加工成精确的 3-D 几何形状,然后进行热处理以达到所需的强度特性,从而提供所需的表面耐用性和抗弯曲疲劳性组合。通过精磨和喷丸处理实现最终的几何形状和表面光洁度。完整的加工周期可能需要 6 到 9 个月,因此需要很长时间才能采购新的生产部件。新飞机的生产——加上对从伊拉克和阿富汗服役回来的飞机的大修——导致了对新生产的螺旋锥齿轮需求非常高的局面。原始设备制造商和政府都密切监控可用的齿轮资产,以确保有足够的供应用于新生产和大修。这种情况给获取螺旋锥齿轮资产以开展研究和开发项目带来了巨大挑战。先前的一项研究(参考文献 1)表明,现有的超精加工方法(化学辅助振动工艺)可以修复表面损伤较小的直齿轮和斜齿轮的有效齿面。可以实现显著的成本节约