2021 年 11 月 24 日通函第 322-04-1666c 号附录 2《2021 年在建船舶技术监督指南》,ND 编号 2-030101-042-E 2 船体 1 第 2.14.2.1 段由以下文字替代:“ 2.14.2.1 在船体结构(包括 MODU/FOP 特定船体结构)制造期间在技术监督过程中进行的检查、控制和检验在表 2.5.1 中给出。对于 MODU,应按照表 2.5.1 中的第 8.6 项检查水密电缆穿越密封系统。”。附录 1 IACS 建议书第 47 号 船舶建造和修理质量标准 2 附录标题补充了 IACS 建议书第 47 号“(Rev.10 September 2021)”的新修订编号和日期。 A 部分 新建船舶的建造和修复质量标准 3 参考文献 .本节由新的参考文献 A17 – A21 补充如下: “A17. IACS UR W31“YP 47 钢和脆性裂纹止裂钢” A18. IACS UR W32“船体结构钢焊工资质认证方案” A19. IACS UR W34“材料和焊缝的先进无损检测” A20. IACS UR W35“对无损检测供应商的要求” A21. IACS UR S33“集装箱船使用极厚钢板的要求” . . 4 在“参考文献”一节后引入新的“标准”一节,内容如下: “标准 EN 10163-1:2004“热轧钢板、宽扁钢和型钢表面状态的交货要求 – 第
目前,微电子设备中用于芯片到封装连接的最常用材料是铝(Al)焊盘和铜(Cu)线。然而,用于连接这些组件的引线键合工艺可能导致金属间化合物的形成,从而导致电化学腐蚀 [1 – 3] ,以及产生柯肯达尔空洞 [4,5] 。这些问题严重限制了微电子封装的长期可靠性。为了解决半导体行业对材料的成本效益、性能和可靠性的担忧。自 21 世纪初以来,人们定期评估铜焊盘上的铜线键合(Cu-to-Cu 键合)方法,但从未发展成为工业应用。2018 年的综述 [6] 总结了挑战和局限性。铜是一种很有前途的微电子材料,因为它的电导率与铝的电导率之比为 5:3,而且熔点高,大大降低了电迁移 [7]。电沉积铜的固有特性,例如与发芽/生长类型相关的杂质和微观结构演变,会使其对腐蚀敏感。虽然铜的氧化膜提供了一定的防腐蚀保护,但它不像不锈钢等其他金属上形成的钝化膜那样稳定、致密或均匀 [8,9]。铜焊盘的集成对半导体行业提出了重大挑战。实现铜的受控表面状态对于实现与封装的可靠连接至关重要。
交替磁性影响电子态,从而允许非相对论自旋分裂的存在。由于交替磁性自旋分裂存在于 3D 布里渊区的特定 k 路径上,我们预计交替磁性表面态将存在于特定的表面取向上。我们揭示了交替磁性表面态的性质,考虑了三个代表性空间群:四方、正交和六方。我们计算了 3D 布里渊区的 2D 投影布里渊区。我们研究了表面及其各自的 2D 布里渊区,确定了具有相反符号的自旋分裂合并消除了交替磁性的位置以及哪些表面上保留了交替磁性。观察三个主要表面取向,我们发现在几种情况下,两个表面对交替磁性视而不见,而交替磁性在一个表面取向上仍然存在。哪个表面保留了交替磁性还取决于磁序。我们定性地表明,与盲表面正交的电场可以激活交替磁性。我们的结果预测了哪些表面需要分裂以保留表面或界面中的交替磁性,这为通过自旋分辨的 ARPES 观察薄膜中的非相对论交替磁性自旋分裂以及将交替磁性与其他集体模式对接铺平了道路。我们为研究交替磁性对平凡和拓扑表面状态的影响开辟了未来的前景。
摘要:按层材料工程产生了有趣的量子现象,例如界面超导性和量子异常效应。但是,探测41个电子状态逐层仍然具有挑战性。这是42理解磁性拓扑绝缘子中拓扑电子状态的层起源的难度来体现的。43在这里,我们报告了磁性44拓扑绝缘子(MNBI 2 TE 4)(BI 2 TE 3)上的层编码频域光发射实验,该实验表征了其电子状态的起源。45红外激光激发启动连贯的晶格振动,其层索引由46个振动频率编码。然后,光发射光谱谱图跟踪电子动力学,其中47层信息在频域中携带。这种层频面的对应关系揭示了拓扑表面状态从顶部磁性层从顶部磁性层转移到埋入的49二层中的48波函数重新分配,从而核对了在50(MNBI 2 TE 4)中消失的破碎对称能量间隙(BI 2 TE 4)(BI 2 TE 3)及其相关化合物。可以将层频率对应关系51在一类宽类的范德华52个超级晶格中划分为逐层划分的电子状态。53
摘要:这项研究研究了后者的NCEP统一预测系统(UFS)耦合模型原型模拟模拟(P5 - P8)在2011年北部夏季 - 17在耦合的土地 - 大气层过程及其对模型偏置的影响方面的性能。在模型开发过程中实施了主要的土地物理更新。也就是说,Noah Land Surface模型被Noah MP取代,并且从P7开始更新了全球植被数据集。这些变化以及许多其他UF的改进发生了。这项研究研究了UFS根据模型土地表面过程的实现的35天预测中模拟表面条件的能力。针对全球的通风塔观测值评估了几种陆地表面状态和漏斗,并且还使用基于过程的多元度量指标来诊断分段的耦合过程。近地表气象变量通常会改善,尤其是表面空气温度,而土地 - 大气耦合指标更好地代表了在水分和辐射的表面土壤水分和表面流量之间观察到的协方差。此外,这项研究发现,连续美国的温度偏见与模型模拟水限制和能量限制区域之间耦合过程的不同平衡的能力有关。对土地初始条件的敏感性也被视为预测误差的来源。最重要的是,这项研究提出了构成耦合土地 - 预测模型中的大气行为的蓝图,这是一项至关重要的模型开发任务,可确保从第一天到季节时间尺度的第一天。
理解非常规的超导性是凝结物理学的关键重点,因为电子配对背后的机制仍未解决。材料的晶体结构显着影响其电子和超导特性。最近,由于其具有非常规超导地面状态的潜力[1-4],因此沮丧的结构(例如Kagome Lattices)引起了很大的关注。kagome晶格材料表现出各种奇特的电子特征,包括平面带,狄拉克锥和非平凡的拓扑表面状态,这些表面既可以预测[5,6]和观察到[7,8]。正如最近发现的AV 3 SB 5化合物(其中A = K,CS,RB)[1,9,9,10]和Metallic“ 132” rt 3 x 2 parres there there there there there there there there rt 3 x 2 prarge the, kagome系统中平坦带的电子相关性和固有特性在超导性的出现中起着至关重要的作用。金属和X是B,GA或SI)[11-13]。 值得注意的是,在AV 3 SB 5系统中,超导性伴随着翻译,旋转和时间逆转对称性的破坏[8,14]。kagome系统中平坦带的电子相关性和固有特性在超导性的出现中起着至关重要的作用。金属和X是B,GA或SI)[11-13]。值得注意的是,在AV 3 SB 5系统中,超导性伴随着翻译,旋转和时间逆转对称性的破坏[8,14]。
SDE扩展的最有希望的平台之一是基于拓扑绝缘体的二极管[1]。Ti的表面提供了强的自旋轨道耦合(SOC),这使得有可能证明具有实质性的磁电效应[2]。已经向基于Ti的Josephson连接处的磁电效应支付了特殊的注意,在那里它以异常的基态相移的形式揭示了自己[3,4]。最近,已经证明,在Ti杂种结构中,在空间分离超导性和铁磁性的结构中,也对基态进行了修改[5,6]。在这种情况下,基态对应于空间不均匀的超导顺序参数。这种超导状态通常称为螺旋状态[7]。超导螺旋状态成为实现SDE的选择之一[8]。由有限的库珀对动量描述,螺旋状态可以在反转和时间反向对称性的系统中进行实现。前者与哈密顿式的SOC术语的出现相连,而后者可以由磁场引入。在这种情况下,库珀对动量的方向取决于磁场的方向。库珀对的有限含量,锁定在磁场的方向上,导致各种系统中的非偏置下降电流。在这里,我们讨论了Ti表面状态在S/TI/S系统中使用平面内Zeeman字段中的Josephson Critistal Crister和非转流运输的六角形翘曲的后果。在基于TI的设备中,六角形翘曲的影响很重要,因为它可以显着改变某些运输特性。例如,众所周知,由于费米表面的变形,在缺陷附近的伴侣效应得到了强烈增强[9]。翘曲术语也导致自旋的各向异性
尽管取得了显着的进展,但关于MHP的光扣材料和设备属性的典型问题尚未得到充分解决。[13]一个重要的问题是这项工作的中心,它是费米水平(E F)位置在MHP的能量差距中的强烈变化,名义上未含量的MHP据报道表现出从N型到P型的行为。[14–20],例如,Schulz等。表明,仅通过将基板从TIO 2变为NiO X,可以将三碘铅中的E F(MAPBI 3)移动多达0.7 eV。[17]在Concontast,Zohar等。发现,基于单乙烯的钙钛矿(例如Mapbbr 3和Cspbbr 3)表现出与底物无关的常数E F位置。[18]此外,OLTHOF报告了MHP E F位置与底物工作功能之间的关系,以表现出相当大的散射,超过1 eV。[21]这种相互矛盾的观察结果已暂时归因于薄膜化学计量,样品制备条件和方法以及样品处理的历史(例如,空气暴露)的差异。[22]例如,已经表明,样本工作功能可以受到化学计量组合的强烈影响。[20,21]此外,根据表面状态的存在,表面带弯曲可以进一步使MHP能级的相互作用与底物的关系复杂化。[23]最后,源自样本制备和/或处理的不同环境条件已显示出不一致的行为。[24–32]因此,急需对钙钛矿/底物界面的能级比对机理进行彻底的和系统研究。
摘要:掺杂铜的BI 2 SE 3(Cu X Bi 2 Se 3)对定制其电子特性并诱导外来电荷相关性具有很大的兴趣,同时保留了独特的Dirac表面状态。但是,Cu X Bi 2 Se 3中的铜掺杂剂显示复杂的电子行为,并且可以作为电子供体或受体起作用,这取决于其浓度和BI 2 SE 3 SE 3晶体晶格中的浓度和原子位点。因此,对掺杂浓度和地点的精确理解和控制既具有基本和实际意义。在此,我们报告了一种基于溶液的单盘合成Cu x Bi 2 Se 3纳米板,具有系统可调的Cu掺杂浓度和掺杂位点。我们的研究揭示了从插入部位逐渐演变为Cu浓度增加的替代部位。插头位点的Cu原子充当电子供体,而替代部位的铜原子充当电子受体,从而对所得材料的电子性质产生明显的影响。我们进一步表明,Cu 0.18 Bi 2 Se 3表现出超导行为,这在BI 2 SE 3中不存在,这突出了Cu掺杂在调整外来量子性质中的重要作用。这项研究建立了一种有效的方法,用于精确合成Cu X Bi 2 Se 3具有量身定制的掺杂浓度,掺杂位点和电子特性。关键字:Cu X Bi 2 Se 3,纳米板,两次掺杂,基于溶液的合成,掺杂位点,进行薄膜,超导性
在篮子编织和宗教仪式中使用的Kagome晶格(包括几何沮丧的角落共享三角形)已成为一个令人兴奋的平台,用于研究量子物理学中物质的奇异阶段,例如量子旋转液体,Chern Magnitism,Chern Magnisism,Chiral Chiral Charge Mentive Mentive Pover和Topodic offercatipation Polidsic officalistic topicalistic topical officatipation topicalistic topical officatipation topicalistic topical officatipation。尽管对kagome化合物产生了极大的兴趣,但该晶格内强拓制绝缘子的探索仍然很少。在这项工作中,我们提出了一个新的Kagome化合物家族,R V 6 GE 6(r =稀土原子),以容纳如此强大的拓扑绝缘体阶段。此阶段的特征是反向散射的弹性表面状态,其由由于带反转而产生的散装绝缘间隙保护。希尔伯特空间中频带结构的拓扑不变性使我们能够识别不同类别的间隙带结构,并确认在r v 6 ge 6中通过从头开始计算的费米能量附近的频段存在z 2的拓扑不变。我们的调查确立了R V 6 GE 6作为Kagome化合物中强大的拓扑绝缘子家族,进一步扩大了这种异国情调的晶格几何形状中的拓扑可能性。值得注意的是,费米能量附近的电子结构以钒kagome晶格平面为主导,这为从琐碎的带中孤立地研究Kagome物理学提供了令人兴奋的机会。此外,在R V 6 GE 6中观察拓扑绝缘体阶段,其中钒价状态在D轨道中,创造了一个前所未有的机会,通过在钒层中的掺杂液中引入拓扑状态,并引入了钒站点,并引入了不合规的d -electrons。