金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域,区域 I 和 III 的斜率较陡,区域 II 的斜率适中,这通常称为巴黎制度。然而,文献中有许多例子表明区域 II 的斜率发生了变化。一些研究人员假设区域 I 和 III 呈线性行为,并导致对整个 FCGR 曲线的多线性描述。在本文中,我们假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下都受幂律行为支配。为了适应多线性 FCGR 曲线的变化,在 FCGR 方程中引入了数学枢轴点,这使得可以直接拟合裂纹长度与循环数曲线以获得 FCGR。能够拟合区域 I 中扩展的裂纹的小裂纹和长裂纹扩展曲线,证实了区域 I 裂纹扩展速率受幂律行为支配。 FCGR 结果表明,小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,无论是小裂纹还是长裂纹。这导致过渡时 ΔK 明显偏移,并指出不均匀采样是小裂纹阈值较低的原因。精确的小裂纹扩展速率测量与长裂纹扩展速率测量相结合,可根据初始不连续尺寸计算疲劳寿命,这与光滑样品的实验获得的疲劳寿命结果相对应。
金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域。区域 II 通常被称为 Paris 区域,通常用单指数的幂律关系建模。区域 I 和 III 分别位于 FCGR 曲线的起点和终点,通常用渐近关系建模。在本文中,我们假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下都受幂律行为支配。为了适应区域 I - III 中 FCGR 斜率的变化,在 Paris 方程中引入了数学枢轴点。存在枢轴点的幂律行为使得能够直接拟合裂纹长度与循环数 (a-N) 曲线,以获得 FCGR 与 ΔK 的关系。这种新方法适用于小而长的裂纹扩展曲线,并能得到精确的多线性 FCGR 曲线,适合重建测得的 a-N 曲线。该方法随后应用于 i) 不同的合金,以显示 FCGR 曲线因合金成分和热处理变化而产生的局部变化,ii) 自然增加微观结构小裂纹的 Δ K 测试,以获得准确的小裂纹 FCGR 数据。与准确的长裂纹数据的比较表明,小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,从而导致明显的偏移
曲线)。相关的声感应电压信号显示为绿点,即所谓的 AE 命中。每个命中的峰值幅度以 dB AE 为单位绘制(参考值 1 μV)。在给定的示例中,时间相关的力曲线在接触力高达约 230 mN 时是非线性的,同时在阈值电压 U th 23 dB AE 以上测量到大量 AE 命中。这种影响是由于压头随着接触载荷的增加而穿透 Al-Cu 顶层,该顶层发生塑性变形并且压痕深度不断增加(见图 7a)。AE 命中的数量及其峰值幅度随着穿透深度的增加而减少。在接触力超过 230 mN 时,只会发生孤立的低幅度命中。在 Al-Cu 顶层上压痕时 SiO x 层开始开裂,接触力 F c 为 367 mN,峰值幅度 A peak 为 55.9 dB AE 。图 6b 绘制了裂纹诱发的 AE 冲击的示例性波信号及其整个信号持续时间。[1]
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。
本论文由 Scholars' Mine(密苏里科技大学图书馆和学习资源服务)提供。本作品受美国版权法保护。未经授权的使用(包括复制再分发)需要获得版权持有者的许可。如需更多信息,请联系 scholarsmine@mst.edu 。
本文主要研究循环波形、频率 (f)、载荷水平和微观结构对 da/dN 与 ΔK 对数-对数图中巴黎地区现代正火轧制 (NR) 和热机械控制工艺 (TMCP) 铁素体-珠光体钢的腐蚀疲劳裂纹扩展速率 (CFCGR) 的敏感性。在频率为 0.2 Hz、0.3 Hz 和 0.5 Hz 以及应力比为 0.1 的情况下使用恒幅正弦波 (si) 和梯形波形(本文中通常称为保持时间 (h-t))。还比较了海水 (SW) 中 si 和 h-t 下 S355 TMCP 钢中的裂纹路径。还讨论了微观结构在延缓或加速 SW 中疲劳裂纹扩展中的作用。实验结果表明,在所有检查的载荷水平和频率下,与 si 相对应的 CFCGR 都高于 h-t 的 CFCGR。观察发现,f 和疲劳载荷水平的降低会增加 h-t 的 CFCGR,但对 si 几乎没有影响。通常,0.2–0.5 Hz 范围内的 f 影响很小;对于给定的 f,载荷的增加会导致 CFCGR 降低,在巴黎地区 (PR) 中,对于 SW 中的 si 和 h-t 都是如此。在 si 和 h-t 下,TMCP 钢(例如 S355G8 + M、S355G10 + M)的 CFCGR 低于正火钢(例如 S355J2 + N)。对腐蚀疲劳试样断裂表面的冶金分析表明,主活性裂纹尖端钝化过程是控制的主要因素
∗ 航空科学与工程学院博士生。† 航空科学与工程学院博士生;通讯作者:heshuangxin@buaa.edu.cn ‡ 航空科学与工程学院教授;通讯作者:ltdong@buaa.edu.cn。§ 机械工程系教授、院长;AIAA 院士。
在航空航天工业中,疲劳裂纹扩展对飞机结构机械装配设计构成了严重威胁。在这些结构中,裂纹扩展是一个需要认真处理的问题,因为除了经济损失之外,还会影响人员生命安全。疲劳裂纹扩展 (FCG) 速率是在恒定振幅载荷作用下,裂纹随循环数增长的速率。分析曲线后发现,应力强度因子 (SIF) 范围“ ∆𝐾 ”与 FCG 速率“ 𝑑𝑎 𝑑𝑁 ⁄ ”之间的相关性呈偏离线性关系,曲线的区域 II 也称为巴黎区域。经验公式方法不能令人满意地处理线性因子。与之前的方法相比,机器学习算法凭借其出色的学习能力和灵活性,能够更好地处理非线性问题。在本研究工作中,利用基于遗传算法、爬山算法和模拟退火算法的优化神经网络来预测 FCG 率。通过对 2324-T39、7055-T7511 和 6013-T651 等不同航空铝合金进行测试,验证了所提出的技术。通过基于模拟退火的优化神经网络,对铝合金 6013-T651 的最小预测 MSE 为 1.0559 × 10 −9。此外,结果与实验过程中设想的数据非常吻合。
到实验数据集。13,14 副作用是,裂纹尖端载荷以及高阶项也由该方法确定。15 与直流电位降 (DCPD) 16,17 或柔度法等经典裂纹长度方法相比,18,19 图像分析技术能够检测各种形状的裂纹。20,21 然而,由于 DIC 数据集中的实验散射或伪影,裂纹路径(尤其是裂纹尖端)的全自动检测通常受到限制。22,23 因此,在 fcp 实验期间将 DIC 应用于大量(几百张)图像总是伴随着大量的手动工作,这构成了研究过程中的瓶颈。机器学习,更具体地说是深度学习,正在成为土木工程结构健康监测的有前途的工具。这涉及特定表面检查以检测建筑物中的裂缝,24,25