Loading...
机构名称:
¥ 3.0

在航空航天工业中,疲劳裂纹扩展对飞机结构机械装配设计构成了严重威胁。在这些结构中,裂纹扩展是一个需要认真处理的问题,因为除了经济损失之外,还会影响人员生命安全。疲劳裂纹扩展 (FCG) 速率是在恒定振幅载荷作用下,裂纹随循环数增长的速率。分析曲线后发现,应力强度因子 (SIF) 范围“ ∆𝐾 ”与 FCG 速率“ 𝑑𝑎 𝑑𝑁 ⁄ ”之间的相关性呈偏离线性关系,曲线的区域 II 也称为巴黎区域。经验公式方法不能令人满意地处理线性因子。与之前的方法相比,机器学习算法凭借其出色的学习能力和灵活性,能够更好地处理非线性问题。在本研究工作中,利用基于遗传算法、爬山算法和模拟退火算法的优化神经网络来预测 FCG 率。通过对 2324-T39、7055-T7511 和 6013-T651 等不同航空铝合金进行测试,验证了所提出的技术。通过基于模拟退火的优化神经网络,对铝合金 6013-T651 的最小预测 MSE 为 1.0559 × 10 −9。此外,结果与实验过程中设想的数据非常吻合。

航空铝合金结构疲劳裂纹扩展速率预测

航空铝合金结构疲劳裂纹扩展速率预测PDF文件第1页

航空铝合金结构疲劳裂纹扩展速率预测PDF文件第2页

航空铝合金结构疲劳裂纹扩展速率预测PDF文件第3页

航空铝合金结构疲劳裂纹扩展速率预测PDF文件第4页

航空铝合金结构疲劳裂纹扩展速率预测PDF文件第5页